×

A numerical study of the influence of slip boundary condition on rotating flow. (English) Zbl 1184.76901

Summary: A numerical solution is obtained for the steady flow of an electrically conducting non-Newtonian incompressible fluid past a plate. The flow is analysed under condition where the no-slip assumption between the plate and the fluid is no longer valid. The fluid under consideration obeys the rheological equations of state due to a third-grade fluid. The fluid is conducting in the presence of a uniform magnetic field under a small magnetic Reynolds number. The solution of the nonlinear equations of motion is obtained using MATLAB®. The effects of the slip, third-grade parameter and magnetic field on the velocity distribution are presented graphically and discussed.

MSC:

76U05 General theory of rotating fluids
76W05 Magnetohydrodynamics and electrohydrodynamics
76A05 Non-Newtonian fluids
76M20 Finite difference methods applied to problems in fluid mechanics

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1063/1.861269 · Zbl 0323.76087 · doi:10.1063/1.861269
[2] DOI: 10.1088/0951-7715/11/6/011 · Zbl 0911.76014 · doi:10.1088/0951-7715/11/6/011
[3] DOI: 10.1007/BF00717588 · doi:10.1007/BF00717588
[4] DOI: 10.1002/zamm.19720521010 · Zbl 0257.76098 · doi:10.1002/zamm.19720521010
[5] Debnath L., Lett. Appl. Eng. Sci. 1 pp 451– (1973)
[6] DOI: 10.1088/0032-1028/16/12/002 · doi:10.1088/0032-1028/16/12/002
[7] DOI: 10.1007/BF01179538 · Zbl 0949.76089 · doi:10.1007/BF01179538
[8] El Kissi N., C.R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 309 pp 7– (1989)
[9] DOI: 10.1080/03605308908820667 · Zbl 0701.35127 · doi:10.1080/03605308908820667
[10] Fosdick R.L., Proc. Roy. Soc. Lond. A 339 pp 351– (1980) · Zbl 0441.76002 · doi:10.1098/rspa.1980.0005
[11] Fujita H., Sûrikaisekikenkyûsho Kôkyûroko 888 pp 199– (1994)
[12] DOI: 10.1115/1.2901403 · Zbl 0800.76509 · doi:10.1115/1.2901403
[13] Goldstein S., Modern Developments in Fluid Dynamics (1938)
[14] DOI: 10.1063/1.1694002 · Zbl 0229.76064 · doi:10.1063/1.1694002
[15] DOI: 10.1122/1.550313 · doi:10.1122/1.550313
[16] DOI: 10.1016/S0020-7462(03)00040-4 · Zbl 1348.76149 · doi:10.1016/S0020-7462(03)00040-4
[17] DOI: 10.1016/S0020-7462(00)00053-6 · Zbl 1345.76099 · doi:10.1016/S0020-7462(00)00053-6
[18] DOI: 10.1016/S0895-7177(02)00252-2 · Zbl 1026.76060 · doi:10.1016/S0895-7177(02)00252-2
[19] DOI: 10.1023/B:MECC.0000029365.39535.28 · Zbl 1068.76571 · doi:10.1023/B:MECC.0000029365.39535.28
[20] DOI: 10.1016/S0020-7462(03)00094-5 · Zbl 1348.76187 · doi:10.1016/S0020-7462(03)00094-5
[21] DOI: 10.1007/s00033-004-1129-0 · doi:10.1007/s00033-004-1129-0
[22] DOI: 10.1142/S0218202596000171 · Zbl 0877.76016 · doi:10.1142/S0218202596000171
[23] DOI: 10.1007/BF00884620 · Zbl 0447.76002 · doi:10.1007/BF00884620
[24] DOI: 10.1007/s002050050164 · Zbl 0934.76005 · doi:10.1007/s002050050164
[25] Litvinov V.G., Mat. Fiz. Nelinein. Mekh. 2 pp 76– (1984)
[26] DOI: 10.1063/1.1692892 · doi:10.1063/1.1692892
[27] DOI: 10.1017/S002211207500290X · Zbl 0314.76078 · doi:10.1017/S002211207500290X
[28] DOI: 10.1017/S0022112070002744 · doi:10.1017/S0022112070002744
[29] DOI: 10.1021/ie00068a019 · doi:10.1021/ie00068a019
[30] DOI: 10.1115/1.2897694 · Zbl 0825.76879 · doi:10.1115/1.2897694
[31] DOI: 10.1103/PhysRevLett.70.287 · doi:10.1103/PhysRevLett.70.287
[32] DOI: 10.1007/BF02728313 · doi:10.1007/BF02728313
[33] Navier M., M émoires de L’Académie des Sciences de L’Intitut de France 6 pp 389– (1823)
[34] DOI: 10.1016/0377-0257(94)80018-9 · doi:10.1016/0377-0257(94)80018-9
[35] DOI: 10.1002/zamm.19740541015 · Zbl 0292.76063 · doi:10.1002/zamm.19740541015
[36] DOI: 10.1080/00036817408839087 · Zbl 0303.76057 · doi:10.1080/00036817408839087
[37] Rajagopal K.R., Navier–Stokes Equations and Related Nonlinear Problems pp 273– (1995) · doi:10.1007/978-1-4899-1415-6_22
[38] DOI: 10.1007/BF01560464 · Zbl 0552.76008 · doi:10.1007/BF01560464
[39] DOI: 10.1016/0020-7462(86)90035-1 · Zbl 0599.76013 · doi:10.1016/0020-7462(86)90035-1
[40] DOI: 10.1007/BF01305747 · Zbl 0936.76013 · doi:10.1007/BF01305747
[41] Rivlin R.S., J. Rat. Mech. Anal. 4 pp 323– (1955)
[42] DOI: 10.1002/aic.690070231 · doi:10.1002/aic.690070231
[43] Secchi P., Diff. Int. Eqs. 7 pp 463– (1994)
[44] DOI: 10.1002/1521-4001(200006)80:6<429::AID-ZAMM429>3.0.CO;2-1 · doi:10.1002/1521-4001(200006)80:6<429::AID-ZAMM429>3.0.CO;2-1
[45] Socolowsky J., Navier–Stokes Equations and Related Nonlinear Problems pp 201– (1995) · doi:10.1007/978-1-4899-1415-6_17
[46] Solonnikov V.A., Proc. Steklov Inst. Math. 125 pp 186– (1973)
[47] DOI: 10.1002/zamm.19730531012 · doi:10.1002/zamm.19730531012
[48] Sutton G.W., Engineering Magnetohydrodynamics (1973)
[49] Tani A., Sûrikaisekikenkyûsho Kôkyûroko 734 pp 123– (1990)
[50] Tani A., Adv. Math. Sci. Appl. 4 pp 51– (1994)
[51] DOI: 10.1093/qjmam/21.4.451 · Zbl 0164.28301 · doi:10.1093/qjmam/21.4.451
[52] DOI: 10.1007/BF01985785 · doi:10.1007/BF01985785
[53] DOI: 10.1002/mma.469 · Zbl 1128.76378 · doi:10.1002/mma.469
[54] DOI: 10.1122/1.550226 · doi:10.1122/1.550226
[55] DOI: 10.1007/BFb0090333 · doi:10.1007/BFb0090333
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.