×

Krein formula with compensated singularities for the ND-mapping and the generalized Kirchhoff condition at the Neumann Schrödinger junction. (English) Zbl 1181.81054

P. Kuchment and H. Zeng showed in [J. Math. Anal. Appl. 258, No. 2, 671–700 (2001; Zbl 0982.35076)], using the probabilistic and variational approaches, that the essential spectral properties of the Neumann Laplacian on the 2D junction with shrinking leads are inherited by the limiting 1D Laplacian on the corresponding quantum graph with Kirchhoff-type boundary conditions at the vertex.
This paper presents similar results for spectral properties of the Neumann Schrödinger operator on a thin 2D star-shaped junction with semi-infinite straight leads. First it drives an approximate formula for the scattering matrix of the junction in terms of the Neumann-to-Dirichlet mapping and then gives an observation on the compensation of singularities inherited from the unperturbed Hamiltonian in the corresponding Krein formula. The compensation of singularities is used to construct the corresponding solvable models of the junction in the form of star-shaped 1D quantum graphs and to drive the boundary conditions at the vertex. Lastly the Neumann Schrödinger results are compared with the previous results by Kuchment and Zeng.

MSC:

81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
47N50 Applications of operator theory in the physical sciences

Citations:

Zbl 0982.35076
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. Adamyan, ”Scattering Matrices for Microschemes,” Oper. Theory Adv. Appl. 59, 1–10 (1992). · Zbl 0793.47006
[2] V. Adamyan, B. Pavlov, and A. Yafyasov, Modified Krein Formula and Analytic Perturbation Procedure for Scattering on Arbitrary Junction, Preprint of the Isaac Newton Institute for Mathematical Studies, NI07016-AGA (Cambridge, 2007). · Zbl 1186.35126
[3] J. del Alamo and C. Eugster, ”Quantum Field-Effect Directional Coupler,” Appl. Phys. Lett. 56(1), 78–80 (1990). · doi:10.1063/1.102657
[4] D. Z. Arov, Yu. P. Ginzburg, S. M. Pozin, and L. A. Sakhnovich, ”Vladimir Petrovich Potapov,” in Matrix and Operator-Valued Functions, Oper. Theory Adv. Appl. 72 (Birkhäuser, Basel, 1994), pp. xi–xviii.
[5] N. T. Bagraev, A. D. Bouravlev, V. K. Ivanov, L. E. Kljachkin, A. M. Maljarenko, S. A. Rykov, and I. A. Shelyh, ”Interference of Charge Carriers in One-Dimensional Semiconductor Rings,” Semiconductors 34(7), 817–824 (2000). · doi:10.1134/1.1188081
[6] N. Bagraev, A. Mikhailova, B. Pavlov, L. Prokhorov, and A. Yafyasov, ”Parameter Regime of a Resonance Quantum Switch,” Phys. Rev. B, 165308 (2005).
[7] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, ”Generalized Many-Channel Conductance Formula with Application to Small Rings,” Phys. Rev. B 31, 6207–6215 (1985). · doi:10.1103/PhysRevB.31.6207
[8] R. Carlson, ”Adjoint and Self-Adjoint Differential Operators on Graphs,” Electron. J. Differential Equations 6, 1–10 (1998). · Zbl 0888.34055
[9] Y. Colin de Verdière, ”Pseudo-Laplaciens. II,” Ann. Inst. Fourier 33, 87–113 (1983). · Zbl 0496.58016 · doi:10.5802/aif.917
[10] S. Datta and B. Das Sarma, ”Electronic Analog of the Electro-Optic Modulator,” Appl. Phys. Lett. 56(7), 665–667 (1990). · doi:10.1063/1.102730
[11] P. Exner and P. Ŝeba, ”A New Type of Quantum Interference Transistor,” Phys. Lett. A 129(8,9), 477–480 (1988). · doi:10.1016/0375-9601(88)90323-4
[12] P. Exner and O. Post, ”Convergence of Graph-Like Thin Manifolds,” J. Geom. Phys. 54(1), 77–115 (2005). · Zbl 1095.58007 · doi:10.1016/j.geomphys.2004.08.003
[13] M. I. Freidlin and A. D. Wentzell, ”Diffusion Processes on Graphs and the Averaging Principle,” Ann. Probab. 21(4), 2215–2245 (1993). · Zbl 0795.60042 · doi:10.1214/aop/1176989018
[14] L. Friedlander, ”Determinant of the Schrödinger Operator on a Metric Graph,” in Quantum Graphs and Their Applications, Contemp. Math. 415 (Amer. Math. Soc., Providence, 2006), pp. 151–160. · Zbl 1112.34071
[15] F. Gesztesy, Y. Latushkin, M. Mitrea, and M. Zinchenko, ”Non-Selfadjoint Operators, Infinite Determinants and Some Applications,” Russ. J. Math. Phys. 12, 443–471 (2005). · Zbl 1201.47028
[16] F. Gesztesy, M. Mitrea, and M. Zinchenko, ”On Dirichlet-to-Neumann Maps and Some Applications to Modified Fredholm Determinants,” in Proceedings of the Conference on Operator Theory, Analysis in Mathematical Physics (OTAMP 2006), Oper. Theory Adv. Appl. 78 (Birkhäuser, Basel, 2008), pp. 191–215. · Zbl 1169.47014
[17] I. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators (Jerusalem, 1965; Daniel Davey & Co., New York, 1966). · Zbl 0143.36505
[18] I. Č. Gohberg [I. Ts. Gokhberg] and E. I. Sigal, ”An Operator Generalization of the Logarithmic Residue Theorem and Rouché’s Theorem,” Mat. Sbornik 84, 607–629 (1971).
[19] D. Grieser, ”Spectra on Graph Neighborhoods and Scattering,” preprint; de.arXiv.org. math.arXiv: 0710.3405v03. · Zbl 1183.58027
[20] L. Guilloé, ”Théorie spectrale de quelques varietés à bouts,” Ann. Sci. École Norm. Sup. (4) 22(1), 137–160 (1989). · Zbl 0682.58049 · doi:10.24033/asens.1580
[21] M. Harmer, B. Pavlov, and A. Yafyasov, ”Boundary Condition at the Junction,” Journal of Computational Electronics, DOI 10.1007/s10825-006-0085-7.
[22] M. Krein, ”Concerning the Resolvents of an Hermitian Operator with the Deficiency-Index (m,m),” Dokl. Akad. Nauk SSSR 52, 651–654 (1946). · Zbl 0063.03358
[23] P. Kuchment and H. Zeng, ”Convergence of Spectra of Mesoscopic Systems Collapsing onto Graph,” J. Math. Anal. Appl. 258, 671–700 (2001). · Zbl 0982.35076 · doi:10.1006/jmaa.2000.7415
[24] P. Kuchment, ”Graph Models for Waves in Thin Structures,” Waves in Periodic and Random Media 12(1), R1–R24 (2002). · Zbl 1063.35525 · doi:10.1088/0959-7174/12/4/201
[25] M. Levitin and M. Marletta, ”A Simple Calculation of Eigenvalues and Resonances in Domains with Regular Ends,” arXiv:math.SP/0611237 v1 8 Nov 2006. · Zbl 1170.35069
[26] M. Marletta, ”Eigenvalue Problems on Exterior Domains and Dirichlet-to-Neumann Map,” J. Comput. Appl. Math. 171(1–2), 367–391 (2004). · Zbl 1055.65093 · doi:10.1016/j.cam.2004.01.019
[27] R. Mennicken and A. Shkalikov, ”Spectral Decomposition of Symmetric Operator Matrices,” Math. Nachr. 179, 259–273 (1996). · Zbl 0874.47009 · doi:10.1002/mana.19961790115
[28] A. Mikhailova, B. Pavlov, and L. Prokhorov, ”Intermediate Hamiltonian via Glazman Splitting and Analytic Perturbation for Meromorphic Matrix-Functions,” Math. Nachr. 280(12), 1376–1416 (2007). · Zbl 1135.47060 · doi:10.1002/mana.200610553
[29] R. Mittra and S. Lee, Analytical Techniques in the Theory of Guided Waves (Macmillan, NY; Collier-Macmillan, London 1971). · Zbl 0227.35002
[30] S. Molchanov and B. Vainberg, ”Scattering Solutions in Networks of Thin Fibers: Small Diameter Asymptotics,” Comm. Math. Phys. 273, 533–559 (2007). · Zbl 1210.35036 · doi:10.1007/s00220-007-0220-8
[31] R. Newton, Scattering Theory of Waves and Particles (Dover Publications, Mineola, 2002). · Zbl 1079.81001
[32] V. I. Oleinik, B. S. Pavlov, and N. V. Sibirev, ”Analysis of the Dispersion Equation for the Schrödinger Equation on Periodic Metric Graphs,” Waves Random Media 14, 157–183 (2004). · Zbl 1076.47032 · doi:10.1088/0959-7174/14/2/006
[33] L. Parnovski, ”Spectral Asymptotics of the Laplace Operator on Manifolds with Cylindrical Ends,” Internat. J. Math. 6, 911–920 (1995). · Zbl 0842.58074 · doi:10.1142/S0129167X95000407
[34] B. Pavlov, ”S-Matrix and Dirichlet-to-Neumann Operators,” in Scattering (Encyclopedia of Scattering), ed. by R. Pike and P. Sabatier (Academic Press, Harcourt Science and Tech. Company, San Diego, 2002), pp. 1678–1688.
[35] B. Pavlov, ”A Star-Graph Model via Operator Extension,” Math. Proc. Cambridge Philos. Soc. 142(2), 365–384. · Zbl 1115.81027
[36] B. Pavlov and A. Yafyasov, ”Standing Waves and Resonance Transport Mechanism in Quantum Networks,” Surface Science 601, 2712–2716 (2007). · doi:10.1016/j.susc.2006.12.023
[37] D. F. Pile, T. Ogava, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005).
[38] O. Post, ”Spectral Convergence of Quasi-One-Dimensional Spaces,” Ann. Henri Poincaré 7(5), 933–973 (2006). · Zbl 1187.81124 · doi:10.1007/s00023-006-0272-x
[39] M. Schatzman, ”On the Eigenvalues of the Laplace Operator on a Thin Set with Neumann Boundary Conditions,” Appl. Anal. 61, 293–306 (1996); 62, 405 (1996). · Zbl 0865.35098 · doi:10.1080/00036819608840461
[40] L. Schwartz, Théorie des Distributions (Hermann, Paris, 1957).
[41] I. A. Semenikhin, B. S. Pavlov, and V. I. Ryzhii, ”Plasma Waves in Two-Dimensional Electron Channels: Propagation and Trapped Modes,” International Newton Institute Report Series NI07028. · Zbl 1185.82057
[42] M. Z. Solomyak, ”On the Spectrum of Laplacian on Regular Metric Trees,” Waves Random Media 14(1), S155–S171 (2004). · Zbl 1077.47513 · doi:10.1088/0959-7174/14/1/017
[43] J. Splettstoesser, M. Governale, and U. Zülicke, ”Persistent Current in Ballistic Mesoscopic Rings with Rashba Spin-Orbit Coupling,” Phys. Rev. B 68, 165341 (2003).
[44] J. Sylvester and G. Uhlmann, ”The Dirichlet to Neumann Map and Applications,” in Proceedings of the Conference ”Inverse Problems in Partial Differential Equations” (Arcata, CA, 1989) (SIAM, Philadelphia, PA, 1990), pp. 101–139.
[45] M. I. Freidlin and A. D. Wentzell, ”Reaction-Diffusion Equations with Randomly Perturbed Boundary Conditions,” Ann. Probab. 20(2), 963–986 (1992). · Zbl 0755.35055 · doi:10.1214/aop/1176989813
[46] H. Q. Xu, ”Electrical Properties of Three-Terminal Ballistic Junction,” Appl. Phys. Lett. 78, 2064 (2001). · doi:10.1063/1.1360229
[47] E. P. Wigner, ”On a Class of Analytic Functions from the Quantum Theory of Collisions,” Ann. of Math. (2) 53, 36–67 (1951). · Zbl 0042.45205 · doi:10.2307/1969342
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.