×

Nonlinear dynamics and chaos in a fractional-order HIV model. (English) Zbl 1181.37124

Summary: We introduce fractional order into an HIV model. We consider the effect of viral diversity on the human immune system with frequency dependent rate of proliferation of cytotoxic T-lymphocytes (CTLs) and rate of elimination of infected cells by CTLs, based on a fractional-order differential equation model. For the one-virus model, our analysis shows that the interior equilibrium which is unstable in the classical integer-order model can become asymptotically stable in our fractional-order model and numerical simulations confirm this. We also present simulation results of the chaotic behaviors produced from the fractional-order HIV model with viral diversity by using an Adams-type predictor-corrector method.

MSC:

37N25 Dynamical systems in biology
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
92C37 Cell biology
26A33 Fractional derivatives and integrals
28A80 Fractals
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] M. A. Nowak, R. M. May, and K. Sigmund, “Immune responses against multiple epitopes,” Journal of Theoretical Biology, vol. 175, no. 3, pp. 325-353, 1995. · doi:10.1006/jtbi.1995.0146
[2] M. A. Nowak and C. R. M. Bangham, “Population dynamics of immune responses to persistent viruses,” Science, vol. 272, no. 5258, pp. 74-79, 1996. · doi:10.1126/science.272.5258.74
[3] M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, UK, 2000. · Zbl 1101.92028
[4] S. Iwami, S. Nakaoka, and Y. Takeuchi, “Frequency dependence and viral diversity imply chaos in an HIV model,” Physica D, vol. 223, no. 2, pp. 222-228, 2006. · Zbl 1126.34032 · doi:10.1016/j.physd.2006.09.011
[5] E. Ahmed and A. S. Elgazzar, “On fractional order differential equations model for nonlocal epidemics,” Physica A, vol. 379, no. 2, pp. 607-614, 2007. · doi:10.1016/j.physa.2007.01.010
[6] E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 542-553, 2007. · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[7] M. P. Lazarević, “Finite time stability analysis of PD\alpha fractional control of robotic time-delay systems,” Mechanics Research Communications, vol. 33, no. 2, pp. 269-279, 2006. · Zbl 1192.70008 · doi:10.1016/j.mechrescom.2005.08.010
[8] T. J. Anastasio, “The fractional-order dynamics of brainstem vestibulo-oculomotor neurons,” Biological Cybernetics, vol. 72, no. 1, pp. 69-79, 1994. · doi:10.1007/BF00206239
[9] T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, “Chaos in a fractional order Chua’s system,” IEEE Transactions on Circuits and Systems I, vol. 42, no. 8, pp. 485-490, 1995. · doi:10.1109/81.404062
[10] B. Bonilla, M. Rivero, L. Rodríguez-Germá, and J. J. Trujillo, “Fractional differential equations as alternative models to nonlinear differential equations,” Applied Mathematics and Computation, vol. 187, no. 1, pp. 79-88, 2007. · Zbl 1120.34323 · doi:10.1016/j.amc.2006.08.105
[11] A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “On the fractional-order logistic equation,” Applied Mathematics Letters, vol. 20, no. 7, pp. 817-823, 2007. · Zbl 1140.34302 · doi:10.1016/j.aml.2006.08.013
[12] R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, USA, 2000. · Zbl 0998.26002
[13] K. S. Cole, “Electric conductance of biological systems,” in Proceedings of the Cold Spring Harbor Symposia on Quantitative Biology, pp. 107-116, Cold Spring Harbor, NY, USA, January 1993.
[14] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[15] Z. M. Odibat and N. T. Shawagfeh, “Generalized Taylor’s formula,” Applied Mathematics and Computation, vol. 186, no. 1, pp. 286-293, 2007. · Zbl 1122.26006 · doi:10.1016/j.amc.2006.07.102
[16] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006. · Zbl 1092.45003
[17] D. Matignon, “Stability results for fractional differential equations with applications to control processing,” in Computational Engineering in Systems Applications, vol. 2, pp. 963-968, IMACS IEEE-SMC, Lille, France, 1996.
[18] J. Velasco-Hernández, J. García, and D. Kirschner, “Remarks on modeling host-viral dynamics and treatment,” in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction to Models, Methods, and Theory, vol. 125 of The IMA Volumes in Mathematics and Its Applications, pp. 287-308, Springer, New York, NY, USA, 2002. · Zbl 1021.92017
[19] R. R. Regoes, D. Wodarz, and M. A. Nowak, “Virus dynamics: the effect of target cell limitation and immune responses on virus evolution,” Journal of Theoretical Biology, vol. 191, no. 4, pp. 451-462, 1998. · doi:10.1006/jtbi.1997.0617
[20] E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems,” Physics Letters A, vol. 358, no. 1, pp. 1-4, 2006. · Zbl 1142.30303 · doi:10.1016/j.physleta.2006.04.087
[21] A. S. Perelson, D. E. Kirschner, and R. De Boer, “Dynamics of HIV infection of CD4+ T cells,” Mathematical Biosciences, vol. 114, no. 1, pp. 81-125, 1993. · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[22] K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1-4, pp. 3-22, 2002. · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[23] K. Diethelm, N. J. Ford, and A. D. Freed, “Detailed error analysis for a fractional Adams method,” Numerical Algorithms, vol. 36, no. 1, pp. 31-52, 2004. · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[24] Y. Iwasa, F. Michor, and M. Nowak, “Some basic properties of immune selection,” Journal of Theoretical Biology, vol. 229, no. 2, pp. 179-188, 2004. · doi:10.1016/j.jtbi.2004.03.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.