×

Quantitative linear independence of an infinite product and its derivatives. (English) Zbl 1181.11045

Let \(q\) be an integer with \(|q|>1\) and \[ H_q(z)=\prod_{n=1}^{\infty}\left(1+\frac{q^nz}{q^{2n}+1}\right), \qquad \Lambda_q=\prod_{n=1}^{\infty}\frac{q^{3n}}{(q^n-1)(q^{2n}+1)}. \] The authors establish a linear independence measure over \({\mathbb Q}\) for \(1, \Lambda_q\) and the values of \(H_q\) and its derivatives (up to some order) at a certain finite number of distinct non-zero rational points. This result is a quantitative and qualitative improvement of J.-P. Bézivin’s main theorem from [Manuscr. Math. 126, No. 1, 41-47 (2008; Zbl 1202.11039)]. As a consequence, the authors deduce irrationality measures for the values of the logarithmic derivative of \(H_q\) \[ \frac{H'_q(z)}{H_q(z)}=\sum_{n=1}^{\infty}\frac{q^n}{q^{2n}+q^nz+1} \] at suitable rational points.

MSC:

11J82 Measures of irrationality and of transcendence
11J72 Irrationality; linear independence over a field
41A21 Padé approximation

Citations:

Zbl 1202.11039
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amou M., Matala-aho T., Väänänen K.: On Siegel-Shidlovskii’s theory for q-difference equations. Acta Arith. 127, 309–335 (2007) · Zbl 1113.11042 · doi:10.4064/aa127-4-2
[2] Bézivin J.-P.: Indépendance linéaire des valeurs des solutions transcendantes de certaines equations fonctionnelles. Manuscripta Math. 61, 103–129 (1988) · Zbl 0644.10025 · doi:10.1007/BF01153585
[3] Bézivin J.-P.: Irrationalité de certaines sommes de séries. Manuscripta Math. 126, 41–47 (2008) · Zbl 1202.11039 · doi:10.1007/s00229-007-0159-2
[4] Bundschuh P., Shiokawa I.: A measure for the linear independence of certain numbers. Res. Math. 7, 130–144 (1984) · Zbl 0552.10021
[5] Bundschuh P., Väänänen K.: On the simultaneous diophantine approximation of new products. Analysis 20, 387–393 (2000) · Zbl 0966.11030
[6] Bundschuh P., Zudilin W.: Irrationality measures for certain q-mathematical constants. Math. Scand. 101, 104–122 (2007) · Zbl 1153.11034
[7] Duverney D.: Some arithmetical consequences of Jacobi’s triple product identity. Math. Proc. Cambridge Philos. Soc. 122, 393–399 (1997) · Zbl 0889.11026 · doi:10.1017/S0305004197001916
[8] Katsurada M.: Linear independence measures for the values of Heine series. Math. Ann. 284, 449–460 (1989) · Zbl 0653.10031 · doi:10.1007/BF01442496
[9] Koivula L., Sankilampi O., Väänänen K.: A linear independence measure for the values of Tschakaloff function and an application. JP J. Algebra Number Theory Appl. 6, 85–101 (2006) · Zbl 1173.11337
[10] Nesterenko, Yu.V.: Modular functions and transcendence questions. Mat. Sb. 187, 65–96 (1996); Engl. transl.: Sb. Math. 187, 1319–1348 (1996) · Zbl 0898.11031
[11] Rochev, I.: On linear independence of values of certain q-series (Russ.). Submitted · Zbl 1220.11089
[12] Smet, C., Van Assche, W.: Irrationality proof of a q-extension of {\(\zeta\)}(2) using little q-Jacobi polynomials. Submitted · Zbl 1226.11074
[13] Stihl T.: Arithmetische Eigenschaften spezieller Heinescher Reihen. Math. Ann. 268, 21–41 (1984) · Zbl 0533.10031 · doi:10.1007/BF01463871
[14] Väänänen K., Zudilin W.: Linear independence of values of Tschakaloff functions with different parameters. J. Number Theory 128, 2549–2558 (2008) · Zbl 1173.11044 · doi:10.1016/j.jnt.2008.03.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.