×

Chaos in the fractional-order Volta’s system: modeling and simulation. (English) Zbl 1176.34050

Summary: This paper deals with a new fractional-order chaotic system. It is based on the concept of Volta’s system, where the mathematical model of Volta’s system contains fractional-order derivatives. This system has simple structure and can display a double-scroll attractor. The behavior of the integer-order and the fractional-order Volta’s system with total order less than three which exhibits chaos is presented as well. Computer simulations are cross-verified by the numerical calculation and the Matlab/Simulink models.

MSC:

34C28 Complex behavior and chaotic systems of ordinary differential equations
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akcay, H., Malti, R.: On the completeness problem for fractional rationals with incommensurable differentiation orders. In: Proceedings of the 17th World Congress IFAC, pp. 15367–15371, Seoul, Korea, July 6–11 (2008)
[2] Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Bifurcation and chaos in noninteger order cellular neural networks. Int. J. Bifurc. Chaos 8(7), 1527–1539 (1998) · Zbl 0936.92006 · doi:10.1142/S0218127498001170
[3] Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Nonlinear Noninteger Order Circuits and Systems–An Introduction. World Scientific, Singapore (2000) · Zbl 0966.93006
[4] Ahmad, W.M.: Hyperchaos in fractional-order nonlinear systems. Chaos Solitons Fractals 26, 1459–1465 (2005) · Zbl 1100.37017 · doi:10.1016/j.chaos.2005.03.031
[5] Carlson, G.E., Halijak, C.A.: Approximation of fractional capacitors (1/s)1/n by a regular Newton process. In: Proceedings of the Sixth Midwest Symposium on Circuit Theory, Madison, Wisconsin, May 6–7 (1963)
[6] Dorčák, L.: Numerical models for simulation of the fractional-order control systems. UEF-04-94, The Academy of Sciences, Inst. of Experimental Physic, Košice, Slovakia (1994)
[7] Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, G.: Fractal systems as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992) · Zbl 0825.58027 · doi:10.1109/9.159595
[8] Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 49(3), 363–367 (2002) · Zbl 1368.65035 · doi:10.1109/81.989172
[9] Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional-order derivatives–An expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004) · Zbl 1134.93300 · doi:10.1007/s11071-004-3752-x
[10] Deng, W.H., Li, C.P.: Chaos synchronization of the fractional Lu system. Physica A 353, 61–72 (2005) · doi:10.1016/j.physa.2005.01.021
[11] Deng, W.: Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 174–188 (2007) · Zbl 1121.65128 · doi:10.1016/j.cam.2006.06.008
[12] Deng, W.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227, 1510–1522 (2007) · Zbl 1388.35095 · doi:10.1016/j.jcp.2007.09.015
[13] Ford, N., Simpson, A.: The numerical solution of fractional differential equations: Speed versus accuracy. Numerical Analysis Report 385, Manchester Centre for Computational Mathematics, Manchester (2001) · Zbl 0976.65062
[14] Gao, X., Yu, J.: Chaos in the fractional-order periodically forced complex Duffing’s oscillators. Chaos Solitons Fractals 24, 1097–1104 (2005) · Zbl 1088.37046 · doi:10.1016/j.chaos.2004.09.090
[15] Hao, B.: Elementary Symbolic Dynamics and Chaos in Dissipative Systems. World Scientific, Singapore (1989) · Zbl 0724.58001
[16] Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos on a fractional Chua’s system. IEEE Trans. Circ. Syst. Theory Appl. 42(8), 485–490 (1995) · doi:10.1109/81.404062
[17] Hwang, Ch., Leu, J.F., Tsay, S.Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47(4), 625–631 (2002) · Zbl 1364.93772 · doi:10.1109/9.995039
[18] Li, Ch., Chen, G.: Chaos and hyperchaos in the fractional-order Rossler equations. Physica A 341, 55–61 (2004) · doi:10.1016/j.physa.2004.04.113
[19] Li, Ch., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[20] Lu, J.G., Chen, G.: A note on the fractional-order Chen system. Chaos Solitons Fractals 27, 685–688 (2006) · Zbl 1101.37307 · doi:10.1016/j.chaos.2005.04.037
[21] Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26, 1125–1133 (2005) · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023
[22] Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Chua’s circuits with a piecewise-linear nonlinearity. Int. J. Mod. Phys. B 19(20), 3249–3259 (2005) · Zbl 1124.37309 · doi:10.1142/S0217979205032115
[23] Matignon, D.: Stability properties for generalized fractional differential systems. In: Proc. of Fractional Differential Systems: Models, Methods and Applications, vol. 5, pp. 145–158 (1998) · Zbl 0920.34010
[24] Nakagava, M., Sorimachi, K.: Basic characteristics of a fractance device. IEICE Trans. Fundam. E75-A(12), 1814–1818 (1992)
[25] Nimmo, S., Evans, A.K.: The effects of continuously varying the fractional differential order of chaotic nonlinear systems. Chaos Solitons Fractals 10(7), 1111–1118 (1999) · Zbl 0980.34032 · doi:10.1016/S0960-0779(98)00088-5
[26] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) · Zbl 0292.26011
[27] Oustaloup, A.: La Derivation Non Entiere: Theorie, Synthese et Applications. Hermes, Paris (1995)
[28] Petráš, I.: Control of fractional-order Chua’s system. J. Electr. Eng. 53(07–08), 219–222 (2002)
[29] Petráš, I., Dorčák, L.: Fractional-order control systems: modelling and simulation. Fract. Calc. Appl. Anal. 6(2), 205–232 (2003)
[30] Petráš, I.: Method for simulation of the fractional-order chaotic systems. Acta Montanistica Slovaca 11(4), 273–277 (2006)
[31] Petráš, I.: A note on the fractional-order Chua’s system. Chaos Solitons Fractals 38(1), 140–147 (2008) · doi:10.1016/j.chaos.2006.10.054
[32] Petráš, I.: Digital fractional-order differentiator/integrator–IIR type. MathWorks, Inc.: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3672 , visited: May 26 (2008)
[33] Petráš, I.: Digital fractional-order differentiator/integrator–fir type. MathWorks, Inc.: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3673 , visited: May 26 (2008)
[34] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[35] Podlubny, I., Petráš, I., Vinagre, B.M., O’Leary, P., Dorčák, Ľ.: Analogue realization of fractional-order controllers. Nonlinear Dyn. 29(1–4), 281–296 (2002) · Zbl 1041.93022 · doi:10.1023/A:1016556604320
[36] Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002) · Zbl 1042.26003
[37] Podlubny, I.: Fractional-order systems and PI {\(\lambda\)} D {\(\mu\)} -controllers. IEEE Trans. Autom. Control 44(1), 208–213 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[38] Podlubny, I.: Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 3(4), 359–386 (2000) · Zbl 1030.26011
[39] Valerio, D.: Toolbox ninteger for Matlab, v.2.3 (September 2005). web: http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm , visited: May 23 (2008)
[40] Vinagre, B.M., Chen, Y.Q., Petráš, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340, 349–362 (2003) · Zbl 1051.93031 · doi:10.1016/j.jfranklin.2003.08.001
[41] Tavazoei, M.S., Haeri, M.: Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems. IET Signal Process. 1(4), 171–181 (2007) · doi:10.1049/iet-spr:20070053
[42] Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in fractional–Order systems. Phys. Lett. A 367, 102–113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[43] Tavazoei, M.S., Haeri, M.: Limitations of frequency domain approximation for detecting chaos in fractional order systems. Nonlinear Anal. 69, 1299–1320 (2008) · Zbl 1148.65094 · doi:10.1016/j.na.2007.06.030
[44] Wang, J.C.: Realizations of generalized Warburg impedance with RC ladder networks and transmission lines. J. Electrochem. Soc. 134(8), 1915–1920 (1987) · doi:10.1149/1.2100789
[45] Westerlund, S.: Dead Matter Has Memory! Causal Consulting, Kalmar (2002)
[46] Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.