×

Image denoising in steerable pyramid domain based on a local Laplace prior. (English) Zbl 1175.68519

Summary: This paper presents a new image denoising algorithm based on the modeling of coefficients in each subband of steerable pyramid employing a Laplacian probability density function (pdf) with local variance. This pdf is able to model the heavy-tailed nature of steerable pyramid coefficients and the empirically observed correlation between the coefficient amplitudes. Within this framework, we describe a novel method for image denoising based on designing both maximum a posteriori and minimum mean squared error estimators, which relies on the zero-mean Laplacian random variables with high local correlation. Despite the simplicity of our spatially adaptive denoising method, both in its concern and implementation, our denoising results achieves better performance than several published methods such as Bayes least squared Gaussian scale mixture technique that is a state-of-the-art denoising technique.

MSC:

68U10 Computing methodologies for image processing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lukac, R.; Smolka, B.; Martin, K.; Plataniotis, K. N.; Venetsanopoulos, A. N., Vector filtering for color imaging, IEEE Signal Processing Magazine, Special Issue on Color Image Processing, 22, 1, 74-86 (2005)
[2] Pitas, I.; Venetsanopoulos, A., Nonlinear Digital Filters (1990), Kluwer: Kluwer Dordrecht · Zbl 0719.93080
[3] Donoho, D. L.; Johnstone, I. M., Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81, 3, 425-455 (1994) · Zbl 0815.62019
[4] Donoho, D. L., Denoising by soft-thresholding, IEEE Transactions on Information Theory, 41, 613-627 (1995) · Zbl 0820.62002
[5] Crouse, M. S.; Nowak, R. D.; Baraniuk, R. G., Wavelet-based statistical signal processing using hidden Markov models, IEEE Transactions on Signal Processing, 46, 4, 886-902 (1998)
[6] Mihcak, M. K.; Kozintsev, I.; Ramchandran, K.; Moulin, P., Low complexity image denoising based on statistical modeling of wavelet coefficients, IEEE Signal Processing Letters, 6, 300-303 (1999)
[7] Luisier, F.; Blu, T.; Unser, M., A new SURE approach to image denoising: inter-scale orthonormal wavelet thresholding, IEEE Transactions on Image Processing, 16, 3, 593-606 (2007)
[8] Portilla, J.; Strela, V.; Wainwright, M. J.; Simoncelli, E. P., Image denoising using Gaussian scale mixtures in the wavelet domain, IEEE Transactions on Image Processing, 12, 1338-1351 (2003) · Zbl 1279.94028
[9] H. Rabbani, M. Vafadust, S. Gazor, Image denoising based on a mixture of Laplace distributions with local parameters in complex wavelet domain, in: Proceedings 13th IEEE International Conference on Image Processing, Atlanta, October 2006.; H. Rabbani, M. Vafadust, S. Gazor, Image denoising based on a mixture of Laplace distributions with local parameters in complex wavelet domain, in: Proceedings 13th IEEE International Conference on Image Processing, Atlanta, October 2006. · Zbl 1186.94283
[10] Selesnick, I. W.; Baraniuk, R. G.; Kingsbury, N., The dual-tree complex wavelet transforms—a coherent framework for multiscale signal and image processing, IEEE Signal Processing Magazine, 22, 6, 123-151 (2005)
[11] Simoncelli, E. P.; Freeman, W. T.; Adelson, E. H.; Heeger, D. J., Shiftable multi-scale transforms, IEEE Transactions on Information Theory, Special Issue on Wavelets, 38, 2, 587-607 (1992)
[12] E. P. Simoncelli, W. T. Freeman, The steerable pyramid: a flexible architecture for multi-scale derivative computation, in: Proceedings Second Annual IEEE International Conference on Image Processing, Washington, DC, October 1995.; E. P. Simoncelli, W. T. Freeman, The steerable pyramid: a flexible architecture for multi-scale derivative computation, in: Proceedings Second Annual IEEE International Conference on Image Processing, Washington, DC, October 1995.
[13] Guerrero-Colon, J. A.; Mancera, L.; Portilla, J., Image restoration using space-variant Gaussian scale mixtures in overcomplete pyramids, IEEE Transactions on Image Processing, 17, 1, 27-41 (2008)
[14] Awate, S. P.; Whitaker, R. T., Unsupervised, information-theoretic, adaptive image filtering for image restoration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 3, 364-376 (2006)
[15] Fukunaga, K.; Hostetler, L., The estimation of the gradient of a density function with applications in pattern recognition, IEEE Transactions on Information Theory, 21, 1, 32-40 (1975) · Zbl 0297.62025
[16] Comaniciu, D.; Meer, P., Mean shift: a robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 5, 603-619 (2002)
[17] Chang, S.; Yu, B.; Vetterli, M., Adaptive wavelet thresholding for image denoising and compression, IEEE Transactions on Image Processing, 9, 1532-1546 (2000) · Zbl 0962.94028
[18] Sendur, L.; Selesnick, I. W., Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency, IEEE Transactions on Signal Processing, 50, 11, 2744-2756 (2002)
[19] Moulin, P.; Liu, J., Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors, IEEE Transactions on Information Theory, 45, 3, 909-919 (1999) · Zbl 0945.94004
[20] Figueiredo, M. A.T.; Nowak, R. D., Wavelet-based image estimation: an empirical Bayes approach using Jeffrey’s noninformative prior, IEEE Transactions on Image Processing, 10, 1322-1331 (2001) · Zbl 1037.68775
[21] A. Hanssen, T.A. Oigard, The normal inverse Gaussian distribution for heavy-tailed processes, in: Proceedings IEEE EURASIP Workshop on Nonlinear Signal and Image processing, 2001.; A. Hanssen, T.A. Oigard, The normal inverse Gaussian distribution for heavy-tailed processes, in: Proceedings IEEE EURASIP Workshop on Nonlinear Signal and Image processing, 2001. · Zbl 1160.94355
[22] Fadili, M. J.; Boubchir, L., Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities, IEEE Transactions on Image Processing, 14, 2, 231-240 (2005)
[23] Chen, Y.; Han, C., Adaptive wavelet threshold for image denoising, Electronic Letters, 41, 10, 586-587 (2005)
[24] Lee, J. S., Digital image enhancement and noise filtering by use of local statistics, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 165-168 (1980)
[25] Cai, Z.; Cheng, T. H.; Lu, C.; Subramanian, K. R., Efficient wavelet-based image denoising algorithm, Electronics Letters, 37, 11, 683-684 (2001)
[26] Fan, G.; Xia, X., Image denoising using a local contextual hidden Markov model in the wavelet domain, IEEE Signal Processing Letters, 8, 5, 125-128 (2001)
[27] Kazubek, M., Wavelet domain image denoising by thresholding and Wiener filtering, IEEE Signal Processing Letters, 10, 11, 324-326 (2003)
[28] Eom, I. K.; Kim, Y. S., Wavelet-based denoising with nearly arbitrarily shaped windows, IEEE Signal Processing Letters, 11, 12, 937-940 (2004)
[29] Chen, G. Y.; Bui, T. D.; Krzyzak, A., Image denoising with neighbour dependency and customized wavelet and threshold, Pattern Recognition, 38, 115-124 (2005)
[30] A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising, in: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 60-65.; A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising, in: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 60-65.
[31] Kervrann, C.; Boulanger, J., Optimal spatial adaptation for patch-based image denoising, IEEE Transactions on Image Processing,, 15, 10, 2866-2878 (2006)
[32] Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K., Image denoising by sparse 3-d transform domain collaborative filtering, IEEE Transactions on Image Processing, 16, 8, 2080-2095 (2007)
[33] Comon, P., Independent component analysis: a new concept, Signal Processing, 36, 3, 287-314 (1994) · Zbl 0791.62004
[34] Andrews, H. C.; Patterson, C. L., Singular value decompositions and digital image processing, IEEE Transactions on Acoustics, Speech, and Signal Processing, 24, 26-53 (1976)
[35] Mallet, S.; Zhang, S., Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, 41, 12 (1993) · Zbl 0842.94004
[36] Candes, E.; Donoho, D., Curvelets: A Surprisingly Effective Nonadaptive Representation of Objects with Edges, Curves and Surface (1999), Vanderbilt University Press: Vanderbilt University Press Nashville, TN, pp. 123-143
[37] Do, M. N.; Vetterli, M., The contourlet transform: an efficient directional multiresolution image representation, IEEE Transactions on Image Processing, 14, 12, 2091-2106 (2005)
[38] Kakarala, R.; Ogunbona, P. O., Signal analysis using a multiresolution form of the singular value decomposition, IEEE Transactions on Image Processing, 10, 724-735 (2001) · Zbl 1028.94010
[39] Hou, Z., Adaptive singular value decomposition in wavelet domain for image denoising, Pattern Recognition, 36, 8, 1747-1763 (2003) · Zbl 1055.68137
[40] Aharon, M.; Elad, M.; Bruckstein, A. M., The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation, IEEE Transactions on Signal Processing, 54, 11, 4311-4322 (2006) · Zbl 1375.94040
[41] Elad, M.; Aharon, M., Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image Processing, 15, 12, 3736-3745 (2006)
[42] H. Guo, Theory and applications of the shift-invariant, time-varying and undecimated wavelet transforms. Master’s Thesis, Department ECE, Rice University, Houston, TX, 1995.; H. Guo, Theory and applications of the shift-invariant, time-varying and undecimated wavelet transforms. Master’s Thesis, Department ECE, Rice University, Houston, TX, 1995.
[43] Pizurica, A.; Philips, W., Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising, IEEE Transactions on Image Processing, 15, 3, 654-665 (2006)
[44] Starck, J.; Candes, E.; Donoho, D., The curvelet transform for image denoising, IEEE Transactions on Image Processing, 11, 6, 670-684 (2002) · Zbl 1288.94011
[45] Johnstone, I. M.; Silverman, B. W., Empirical Bayes selection of wavelet thresholds, Annals of Statistics, 33, 1700-1752 (2005) · Zbl 1078.62005
[46] Mallat, S. G., A theory for multiresolution signal decomposition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674-697 (1989) · Zbl 0709.94650
[47] Rabbani, H.; Vafadust, M., Image/video denoising based on a mixture of Laplace distributions with local parameters in multidimensional complex wavelet domain, Signal Processing, 88, 1, 158-173 (2008) · Zbl 1186.94283
[48] Shapiro, J., Embedded image coding using zero-trees of wavelet coefficients, IEEE Transactions on Signal Processing, 41, 12, 3445-3462 (1993) · Zbl 0841.94020
[49] Buccigrossi, R. W.; Simoncelli, E. P., Image compression via joint statistical characterization in the wavelet domain, IEEE Transactions on Image Processing, 8, 12, 1688-1701 (1999)
[50] Gazor, S.; Zhang, W., Speech enhancement employing Laplacian-Gaussian mixture, IEEE Transactions on Speech and Audio Processing, 13, 5, 896-904 (2005)
[51] Kalifa, J.; Laine, A. F.; Esser, P. D., Regularization in tomographic reconstruction using thresholding estimators, IEEE Transactions on Medical Imaging, 22, 3, 351-359 (2003)
[52] Wang, J.; Li, T.; Lu, H.; Liang, Z., Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography, IEEE Transactions on Medical Imaging, 25, 10 (2006)
[53] Chipman, H. A.; Kolaczyk, E. D.; McCulloch, R. E., Adaptive Bayesian wavelet shrinkage, Journal of the American Statistical Association, 92, 1413-1421 (1997) · Zbl 0913.62027
[54] Foi, A.; Katkovnik, V.; Egiazarian, K., Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images, IEEE Transactions on Image Processing, 16, 5, 1395-1411 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.