×

Dynamics of a two-species Lotka-Volterra competition system in a polluted environment with pulse toxicant input. (English) Zbl 1172.92036

Summary: In most models of population dynamics in a polluted environment, the emission of toxicants is generally considered to be continuous, but it is often the case that toxicants are emitted in regular pulses. This paper deals with the effects of pulse toxicants inputs with constant rate on two-species Lotka-Volterra competition systems in a polluted environment. The thresholds between persistence and extinction of each population are obtained. Moreover, our results indicate that the release amount of toxicants and the pulse period will affect the fate of each population. Finally, the results are verified through computer simulations.

MSC:

92D40 Ecology
37N25 Dynamical systems in biology
68U20 Simulation (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Laurent, H., Environmental Pollution (1977), Holt Rinehart and Winston
[2] De Luna, J. T., Effects of toxicants on populations: a qualitative approach. Resource-Consumer-Toxicant models, Ecol. Model., 35, 249-273 (1987)
[3] Debasis, M., Persistence and global stability of population in a polluted environment with delay, J. Biol. Syst., 10, 225-232 (2002) · Zbl 1099.92074
[4] Dubey, B., Modelling the interaction of two biological species in a polluted environment, J. Math. Anal. Appl., 246, 58-79 (2000) · Zbl 0952.92030
[5] Freedman, H. I.; Shukla, T. B., Models for the effect of toxicant in single-species and predator-prey systems, J. Math. Biol., 30, 15-30 (1991) · Zbl 0825.92125
[6] Hallam, T. G.; Clark, C. E.; Lassiter, R. R., Effects of toxicants on populations: a qualitative approach. I. Equilibrium environment exposure, Ecol. Model., 18, 291-304 (1984)
[7] Hallam, T. G.; Clark, C. E.; Jordan, G. S., Effects of toxicants on populations: a qualitative approach. II. First order kinetics, J. Math. Biol., 18, 25-37 (1983) · Zbl 0548.92019
[8] Hallam, T. G.; De Luna, J. L., Effects of toxicants on populations: a qualitative approach. III. Environment and food chain pathways, J. Theor. Biol., 109, 411-429 (1984)
[9] Shukla, J. B.; Dubey, B., Simultaneous effect of two toxicants on biological species: a mathematical model, J. Biol. Syst., 4, 109-130 (1996)
[10] Xiao, Y. N.; Chen, L. S., Effects of toxicants on a stage-structured population growth model, Appl. Math. Comput., 123, 63-73 (2001) · Zbl 1017.92044
[11] D.D. Bainov, P.S. Simeonov, Impulsive differential equations: periodic solutions and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, 1993.; D.D. Bainov, P.S. Simeonov, Impulsive differential equations: periodic solutions and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, 1993. · Zbl 0815.34001
[12] Lakshmikantham, V.; Bainov, D.; Simeonov, P., Theory of Impulsive Differential Equations (1989), World Scientific: World Scientific Singapore · Zbl 0719.34002
[13] Gao, S. J.; Chen, L. S.; Nieto, J. J.; Torres, A., Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24, 6037-6045 (2006)
[14] Zhang, H.; Georgescu, P.; Chen, L. S., An impulsive predator-prey system with Beddington-Deangelis functional response and time delay, Int. J. Biomath., 1, 1, 1-17 (2008) · Zbl 1155.92045
[15] Liu, B.; Chen, L. S., The periodic competing Lotka-Volterra model with impulsive effect, Math. Med. Boil., 21, 129-145 (2004) · Zbl 1055.92056
[16] Liu, B.; Chen, L. S., Dynamic complexity in Lotka-Volterra predator-prey system concerning impulsive control strategy, Int. J. Bifur. Chaos Appl. Sci. Eng., 15, 517-531 (2005) · Zbl 1080.34026
[17] Liu, B.; Zhang, Y. J.; Chen, L. S., Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control, Chaos Solitons Fract., 22, 123-134 (2004) · Zbl 1058.92047
[18] Meng, X. Z.; Chen, L. S., Permanence and global stability in an impulsive Lotka-Volterra \(n\)-species competitive system with both discrete delays and continuous delays, Int. J. Biomath., 1, 2, 179-196 (2008) · Zbl 1155.92356
[19] X.Z. Meng, L.S. Chen, H.D. Chen, Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination, Appl. Math. Comput. 186, 516-529.; X.Z. Meng, L.S. Chen, H.D. Chen, Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination, Appl. Math. Comput. 186, 516-529. · Zbl 1111.92049
[20] Meng, X. Z.; Chen, L. S.; Li, Q. X., The dynamics of an impulsive delay predator-prey model with variable coefficients, Appl. Math. Comput., 198, 361-374 (2008) · Zbl 1133.92029
[21] Jin, Z.; Haque, M.; Liu, Q. X., Pulse vaccination in the periodic infection rate SIR epidemic model, Int. J. Biomath., 1, 4, 409-432 (2008) · Zbl 1156.92028
[22] Xiong, Z. L.; Xue, Y.; LI, S. Y., A food chain system with Holling-IV functional responses and impulsive effect, Int. J. Biomath., 1, 3, 361-375 (2008) · Zbl 1155.92043
[23] Song, X. Y.; Li, Y. F., Dynamic complexities of a Holling II two-prey one-predator system with impulsive effect, Chaos Solitons Fract., 33, 463-478 (2007) · Zbl 1136.34046
[24] Tang, S. Y.; Chen, L. S., Density-dependent birth rate, birth pulses and their population dynamic consequences, J. Math. Biol., 44, 185-199 (2002) · Zbl 0990.92033
[25] Tang, S. Y.; Cheke, R. A.; Xiao, Y. N., Optimal impulsive harvesting on non-autonomous Beverton-Holt difference equations, Nonlinear Anal., 65, 2311-2341 (2006) · Zbl 1119.39011
[26] Thomas, P. M.; Snell, T. W.; Joffers, M., A control problem in a polluted environment, Math. Biosci., 133, 139-163 (1996) · Zbl 0844.92026
[27] Zhang, T. L.; Teng, Z. D., An SIRVS epidemic model with pulse vaccination strategy, J. Theor. Biol., 250, 375-381 (2008) · Zbl 1397.92700
[28] Liu, B.; Chen, L. S.; Zhang, Y. J., The effects of impulsive toxicant input on a population in a polluted environment, J. Biol. Syst., 11, 265-274 (2003) · Zbl 1041.92044
[29] Liu, H. P.; Ma, Z., The threshold of survival for system of two species in a polluted environment, J. Math. Biol., 30, 49-61 (1991) · Zbl 0745.92028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.