×

Nonlinear analysis of time-delay position feedback control of container cranes. (English) Zbl 1170.70396

Summary: Time-delay feedback control of container cranes is robustly stable and insensitive to initial conditions for most of the linearly stable region. To better understand this robustness and any limitations of the technique, we undertake a nonlinear analysis of the system. To this end, we develop a nonlinear model of the crane system by modeling the crane-hoist-payload assembly as a double pendulum. Then, we derive a linear approximation specific to this model. Finally, we derive a cubic model of the dynamics for nonlinear analysis. Using linear analysis, we determine the gain and time delay factors for stabilizing controllers. Also, we show that the controller undergoes a Hopf bifurcation at the linear stability boundary. Using the method of multiple scales on the cubic model, we determine the normal form of the Hopf bifurcation. We then show that for practical operating ranges, the controller undergoes a supercritical bifurcation that helps explain the robustness of the controller.

MSC:

70Q05 Control of mechanical systems
93B52 Feedback control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: A review. J. Vib. Control 9, 863–908 (2003) · Zbl 1048.70506 · doi:10.1177/1077546303009007007
[2] Golafshani, A.R., Aplevich, J.D.: Computation of time-optimal trajectories for tower cranes. In: Proceedings of the IEEE Conference on Control Applications, pp. 1134–1139 (1995)
[3] Alsop, C.F., Forster, G.A., Holmes, F.R.: Ore unloader automation–a feasibility study. In: Proceedings of IFAC on Systems Engineering for Control Systems, pp. 295–305 (1965)
[4] Carbon, L.: Automation of grab cranes. Siemens Rev. XLIII 2, 80–85 (1976)
[5] Jones, J.F., Petterson, B.J.: Oscillation damped movement of suspended objects. In: Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, PA, vol. 2, pp. 956–962 (1988)
[6] Noakes, M.W., Jansen, J.F.: Shaping inputs to reduce vibration for suspended payloads. In: Proceedings of the 4th ANS Topical Meeting on Robotics and Remote Systems, Albuquerque, NM, pp. 141–150 (1990)
[7] Noakes, M.W., Petterson, B.J., Werner, J.C.: An application of oscillation damped motion for suspended payloads to the advanced integrated maintenance system. In: Proceedings of the 38th Conference on Remote Systems Technology, San Francisco, CA, vol. 1, pp. 63–68 (1990)
[8] Noakes, M.W., Jansen, J.F.: Generalized inputs for damped-vibration control of suspended payloads. Robot. Auton. Syst. 10(2), 199–205 (1992) · doi:10.1016/0921-8890(92)90026-U
[9] Zinober, A.S., Fuller, A.T.: The sensitivity of normally time-optimal control of systems to parameter variation. Int. J. Control 17, 673–703 (1973) · Zbl 0273.93021 · doi:10.1080/00207177308932413
[10] Virkkunen, J., Marttinen, A.: Computer control of a loading bridge. In: Proceedings of the IEE International Conference: Control’88, Oxford, UK, pp. 484–488 (1988)
[11] Yoon, J.S., Park, B.S., Lee, J., Park, H.S.: Various control schemes for implementation of the anti-swing crane. In: Proceedings of the ANS 6th Topical Meeting on Robotics and Remote Systems, Monterey, CA, pp. 472–479 (1995)
[12] Singhose, W.E., Porter, L.J., Seering, W.P.: Input shaped control of a planar crane with hoisting. In: Proceedings of the American Control Conference, Albuquerque, NM, pp. 97–100 (1997)
[13] Nayfeh, N.A., Masoud, Z.N., Baumann, W.T.: A comparison of three feedback controllers for container cranes. In: ASME IDETC (2005)
[14] Yong-Seok, A., Hyungbo, S., Hidemasa, Y., Naoki, F., Hideshi, K., Seung-Ki, S.: A new vision-sensoreless anti-sway control system for container cranes. In: IEEE Industry Applications Conference, Salt Lake City, UT, vol. 1, pp. 262–269 (2003)
[15] Yong-Seok, A., Keum-Shik, H., Seung-Ki, S.: Anti-sway control of container cranes: inclinometer, observer, and state feedback. Int. J. Control Autom. Syst. 2(4), 435–449
[16] DeSantis, R.M., Krau, S.: Bang-bang motion of a Cartesian crane. Robotica 12, 174–177 (1994) · doi:10.1017/S0263574700018002
[17] Henry, R.J., Masoud, Z.N., Nayfeh, A.H., Mook, D.T.: Cargo pendulation reduction on ship-mounted cranes via boom-luff angle actuation. J. Vib. Control 7, 1253–1264 (2001) · Zbl 1010.74583 · doi:10.1177/107754630100700807
[18] Masoud, Z.N., Nayfeh, A.H.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34(3–4), 347–358 (2003) · Zbl 1041.70502 · doi:10.1023/B:NODY.0000013512.43841.55
[19] Nayfeh, N.A.: Adaptation of delayed position feedback to the reduction of sway of container cranes. Master’s thesis, Virginia Polytechnic Institute and State University (2002)
[20] Nayfeh, A.H., Chin, C.M., Pratt, J.: Perturbation methods in nonlinear dynamics–applications to machining dynamics. J. Manuf. Sci. Eng. 119, 485–493 (1997) · doi:10.1115/1.2831178
[21] Stone, E., Campbell, S.: Stability and bifurcation analysis of a nonlinear dde model for drilling. J. Nonlinear Sci. 14(1), 27–57 (2004) · Zbl 1056.37098 · doi:10.1007/s00332-003-0553-1
[22] Nayfeh, A.H.: Method of Normal Forms. Wiley–Interscience, New York (1993) · Zbl 1220.37002
[23] Masoud, Z.N., Nayfeh, A.H., Al-Mousa, A.: Delayed position-feedback controller for the reduction of payload pendulations of rotary cranes. J. Vib. Control 9(1), 257–277 (2003) · Zbl 1049.70654
[24] Hartman, P.: A lemma in the theory of structural stability of differential equations. In: Proceedings of the American Mathematical Society, vol. 11, pp. 610–620 (1960) · Zbl 0132.31904
[25] Grobman, D.M.: Homeomorphisms of systems of differential equations. Dokl. Akad. Nauk SSSR 128 (1959) · Zbl 0100.29804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.