×

Stable high-order quadrature rules with equidistant points. (English) Zbl 1170.65016

Newton-Cotes quadrature rules become unstable for high orders. In this paper, the author reviews two techniques to construct stable high-order quadrature rules using \(N\) equidistant quadrature points. The first method is based on results of M. W. Wilson [Math. Comput. 24, 271–282 (1970; Zbl 0219.65028)]. The second approach uses nonnegative least squares methods of C. L. Lawson and R. J. Hanson [Solving least squares problems, SIAM Philadelphia (1995; Zbl 0860.65029)]. The stability follows from the fact that all weights are positive. These results can be achieved in the case \(N\sim d^2\), where \(d\) is the polynomial order of accuracy. Then the computed approximation corresponds implicitly to the integral of a (discrete) least squares approximation of the (sampled) integrand. The author shows how the underlying discrete least squares approximation can be optimized for the numerical integration. Numerical tests are presented.

MSC:

65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
65F20 Numerical solutions to overdetermined systems, pseudoinverses

Software:

OPQ
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stroud, A. H., Approximate Calculation of Multiple Integrals (1971), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0379.65013
[2] Engels, H., Numerical Quadrature and Cubature (1980), Academic Press: Academic Press London · Zbl 0435.65013
[3] Davis, P. J.; Rabinowitz, P., Methods of numerical integration, (Computer Science and Applied Mathematics (1984), Academic Press: Academic Press New York) · Zbl 0154.17802
[4] Evans, G. A., Practical Numerical Integration (1993), John Wiley & Sons: John Wiley & Sons Chichester · Zbl 0811.65015
[5] Krommer, A. R.; Ueberhuber, C. W., Computational Integration (1998), SIAM: SIAM Philadelphia · Zbl 0903.65019
[6] Morton, K. W.; Mayers, D. F., Numerical Solution of Partial Differential Equations (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0811.65063
[7] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Courier Dover Publications: Courier Dover Publications Mineola, NY · Zbl 0987.65122
[8] Brunner, H., (Collocation Methods for Volterra Integral and Related Functional Equations. Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge Monographs on Applied and Computational Mathematics, vol. 15 (2004), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1059.65122
[9] Tchakaloff, V., Formules de cubature mécaniques à coefficients non négatifs, Bull. Sci. Math., 81, 123-134 (1957) · Zbl 0079.13908
[10] Davis, P. J., A construction of nonnegative approximate quadrature, Math. Comp., 21, 578-582 (1967) · Zbl 0189.16401
[11] Cools, R., Constructing cubature formulae: The science behind the art, Acta Numer., 6, 1-54 (1997) · Zbl 0887.65028
[12] Steinitz, E., Über bedingt konvergente reihen und konvexe systeme, J. Reine Angew. Math., 143, 128-175 (1913) · JFM 44.0287.01
[13] Wilson, M. W., Necessary and sufficient conditions for equidistant quadrature formula, SIAM J Numer. Anal., 7, 1, 134-141 (1970) · Zbl 0197.04901
[14] Wilson, M. W., Discrete least squares and quadrature formulas, Math. Comp., 24, 110, 271-282 (1970) · Zbl 0219.65028
[15] Lawson, C. L.; Hanson, R. J., Solving least squares problems, (Classics in Applied Mathematics (1996), SIAM: SIAM Philadelphia) · Zbl 0185.40701
[16] Karlin, S.; Studden, W., Tchebysheff Systems with Applications in Analysis and Statistics (1966), Wiley-Interscience: Wiley-Interscience New York · Zbl 0153.38902
[17] Pólya, G., Über die Konvergenz von Quadraturverfahren, Math. Z., 37, 264-286 (1933) · JFM 59.0261.02
[18] Davis, P. J., On a problem in the theory of mechanical quadratures, Pacific J. Math., 5, 669-674 (1955) · Zbl 0065.29401
[19] Golub, G. H.; van Loan, C. F., Matrix Computations (1996), Johns Hopkins University Press · Zbl 0865.65009
[20] Alpert, B. K., Hybrid Gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput., 20, 5, 1551-1584 (1999) · Zbl 0933.41019
[21] Forsythe, G. E., Generation and use of orthogonal polynomials for data-fitting with a digital computer, J. SIAM, 5, 2, 74-88 (1956) · Zbl 0083.35503
[22] Gautschi, W., Orthogonal Polynomials: Computation and Approximation (2004), Clarendon Press: Clarendon Press Oxford · Zbl 1130.42300
[23] Gautschi, W., Moments in quadrature problems, Comput. Math. Appl., 33, 105-118 (1997) · Zbl 0930.65011
[24] Gautschi, W., Is the recurrence relation for orthogonal polynomials always stable?, BIT, 33, 2, 277-284 (1993) · Zbl 0783.65009
[25] Gautschi, W., The computation of special functions by linear difference equations, (Elaydi, S.; Györi, I.; Ladas, G., Advances in Difference Equations (1997), Gordon and Breach: Gordon and Breach Amsterdam), 213-243 · Zbl 0892.65008
[26] Trefethen, L. N., Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev., 50, 1, 67-87 (2008) · Zbl 1141.65018
[27] Davis, P. J., Approximate integration rules with nonnegative weights, (Aziz, A. K., Lectures in Differential Equations, vol. 2 (1969)), 233-256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.