×

Fractal strings and multifractal zeta functions. (English) Zbl 1170.11030

Summary: For a Borel measure on the unit interval and a sequence of scales that tend to zero, we define a one-parameter family of zeta functions called multifractal zeta functions. These functions are a first attempt to associate a zeta function to certain multifractal measures. However, we primarily show that they associate a new zeta function, the topological zeta function, to a fractal string in order to take into account the topology of its fractal boundary. This expands upon the geometric information garnered by the traditional geometric zeta function of a fractal string in the theory of complex dimensions. In particular, one can distinguish between a fractal string whose boundary is the classical Cantor set, and one whose boundary has a single limit point but has the same sequence of lengths as the complement of the Cantor set. Later work will address related, but somewhat different, approaches to multifractals themselves, via zeta functions, partly motivated by the present paper.

MSC:

11M41 Other Dirichlet series and zeta functions
28A12 Contents, measures, outer measures, capacities
28A80 Fractals
28A75 Length, area, volume, other geometric measure theory
28A78 Hausdorff and packing measures
28C15 Set functions and measures on topological spaces (regularity of measures, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arbeiter M., Patzschke N.: Random self-similar multifractals. Math. Nachr. 181, 5–42 (1996) · Zbl 0873.28003 · doi:10.1002/mana.3211810102
[2] Besicovitch A.S., Taylor S.J.: On the complementary intervals of a linear closed set of zero Lebesgue measure. J. Lond. Math. Soc. 29, 449–459 (1954) · Zbl 0056.27801 · doi:10.1112/jlms/s1-29.4.449
[3] Brown G., Michon G., Peyrière J.: On the multifractal analysis of measures. J. Stat. Phys. 66, 775–790 (1992) · Zbl 0892.28006 · doi:10.1007/BF01055700
[4] Cawley R., Mauldin R.D.: Multifractal decompositions of Moran fractals. Adv. Math. 92, 196–236 (1992) · Zbl 0763.58018 · doi:10.1016/0001-8708(92)90064-R
[5] Cohn D.L.: Measure Theory. Birkhäuser, Boston (1980) · Zbl 0436.28001
[6] Edgar G.A., Mauldin R.D.: Multifractal decompositions of digraph recursive fractals. Proc. Lond. Math. Soc. 65, 604–628 (1992) · Zbl 0764.28007 · doi:10.1112/plms/s3-65.3.604
[7] Ellis R.S.: Large deviations for a general class of random vectors. Ann. Probab. 12, 1–12 (1984) · Zbl 0534.60026 · doi:10.1214/aop/1176993370
[8] Falconer K.: Fractal Geometry–Mathematical Foundations and Applications, 2nd edn. Wiley, Chichester (2003) · Zbl 1060.28005
[9] Graf S., Mauldin R.D., Williams S.C.: The exact Hausdorff dimension in random recursive constructions. Mem. Am. Math. Soc. (381) 71, 1–121 (1988) · Zbl 0641.60003
[10] Hambly B.M., Lapidus M.L.: Random fractal strings: their zeta functions, complex dimensions and spectral asymptotics. Trans. Am. Math. Soc. 358, 285–314 (2006) · Zbl 1079.60019 · doi:10.1090/S0002-9947-05-03646-9
[11] He C.Q., Lapidus M.L.: Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function. Mem. Am. Math. Soc. (608) 127, 1–97 (1997) · Zbl 0877.35086
[12] Jaffard S.: Multifractal formalism for functions. SIAM J. Math. Anal. 28, 994–998 (1997) · Zbl 0876.42022
[13] Jaffard S.: Oscillation spaces: properties and applications to fractal and multifractal functions. J. Math. Phys. 38, 4129–4144 (1998) · Zbl 0930.42021 · doi:10.1063/1.532488
[14] Jaffard S.: The multifractal nature of Lévy processes. Probab. Theory Relat. Fields 114, 207–227 (1999) · Zbl 0947.60039 · doi:10.1007/s004400050224
[15] Jaffard, S.: Wavelet Techniques in Multifractal Analysis. In: [13], pp. 91–151 · Zbl 1093.28005
[16] Jaffard S., Meyer Y.: Wavelet methods for pointwise regularity and local oscilations of functions. Mem. Am. Math. Soc. (587) 123, 1–110 (1996) · Zbl 0873.42019
[17] Lapidus M.L.: Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl–Berry conjecture. Trans. Am. Math. Soc. 325, 465–529 (1991) · Zbl 0741.35048 · doi:10.2307/2001638
[18] Lapidus, M.L.: Spectral and fractal geometry: From the Weyl–Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function. In: Bennewitz, C. (ed.) Differential Equations and Mathematical Physics. Proc. Fourth UAB Internat. Conf. (Birmingham, March 1990), pp. 151–182. Academic Press, New York (1992) · Zbl 0736.58040
[19] Lapidus, M.L.: Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl–Berry conjecture. In: Sleeman, B.D., Jarvis, R.J. (eds.) Ordinary and Partial Differential Equations, vol. IV. Proc. Twelfth Internat. Conf. (Dundee, Scotland, UK, June 1992). Pitman Research Notes in Math. Series, vol. 289, pp. 126–209. Longman Scientific and Technical, London (1993) · Zbl 0830.35094
[20] Lapidus M.L., Maier H.: The Riemann hypothesis and inverse spectral problems for fractal strings. J. Lond. Math. Soc. (2) 52, 15–34 (1995) · Zbl 0836.11031
[21] Lapidus, M.L., Pearse, E.P.J.: A tube formula for the Koch snowflake curve, with applications to complex dimensions. J. Lond. Math. Soc. (2) 74, 397–414 (2006) (also: e-print, arXiv:math-ph/0412029, 2005) · Zbl 1110.26006
[22] Lapidus, M.L., Pearse, E.P.J.: Tube formulas and complex dimensions of self-similar tilings, e-print, arXiv:math.DS/0605527v2, 2008 (also: IHES/M/08/27, 2008)
[23] Lapidus, M.L., Pearse, E.P.J.: Tube formulas for self-similar fractals. In: Exner, P., et al. (eds.) Analysis on Graphs and its Applications. Proc. Sympos. Pure Math., vol. 77, pp. 211–230. Amer. Math. Soc., Providence (2008) · Zbl 1157.28001
[24] Lapidus M.L., Pomerance C.: The Riemann zeta-function and the one-dimensional Weyl–Berry conjecture for fractal drums. Proc. Lond. Math. Soc. (3) 66, 41–69 (1993) · Zbl 0788.34083 · doi:10.1112/plms/s3-66.1.41
[25] Lapidus M.L., Pomerance C.: Counterexamples to the modified Weyl–Berry conjecture on fractal drums. Math. Proc. Camb. Philos. Soc. 119, 167–178 (1996) · Zbl 0858.58052 · doi:10.1017/S0305004100074053
[26] Lapidus M.L., van Frankenhuijsen M.: Fractal Geometry and Number Theory: Complex dimensions of fractal strings and zeros of zeta functions. Birkhäuser, Boston (2000) · Zbl 0981.28005
[27] Lapidus M.L., van Frankenhuijsen M.: A prime orbit theorem for self-similar flows and Diophantine approximation. Contemp. Math. 290, 113–138 (2001) · Zbl 1107.37008
[28] Lapidus M.L., van Frankenhuijsen M.: Complex dimensions of self-similar fractal strings and Diophantine approximation. J. Exp. Math. (1) 42, 43–69 (2003) · Zbl 1061.11039
[29] Lapidus, M.L., van Frankenhuijsen, M.: Fractal Geometry, Complex Dimensions and Zeta functions: Geometry and spectra of fractal strings. Springer Monographs in Mathematics. Springer-Verlag, New York (2006) · Zbl 1119.28005
[30] Lapidus, M.L., van Frankenhuijsen, M. (eds.): Fractal Geometry and Applications: A jubilee of Benoît Mandelbrot. In: Proceedings of Symposia in Pure Mathematics, vol. 72, Part 2. Amer. Math. Soc., Providence (2004) · Zbl 1055.37003
[31] Lapidus, M.L., Rock, J.A.: Towards zeta functions and complex dimensions of multifractals. Complex Variables and Elliptic Equations, special issue dedicated to fractals. [See also: Preprint, Institut des Hautes Etudes Scientfiques, IHES/M/08/34, 2008; arXiv:math-ph/0810.0789, 2008.]
[32] Lapidus, M.L., Rock, J.A.: Partition zeta functions and multifractal probability measures, preliminary version (2008)
[33] Lau K.S., Ngai S.M.: L q spectrum of the Bernouilli convolution associated with the golden ration. Stud. Math. 131, 225–251 (1998) · Zbl 0929.28005
[34] Lévy Véhel J.: Introduction to the multifractal analysis of images. In: Fisher, Y.(eds) Fractal Images Encoding and Analysis., Springer, Berlin (1998) · Zbl 0940.68168
[35] Lévy Véhel, J., Mendivil, F.: Multifractal strings and local fractal strings, preliminary version (2008)
[36] Lévy Véhel, J., Riedi, R.: Fractional Brownian motion and data traffic modeling: the other end of the spectrum. In: Lévy Véhel, J., Lutton, E., Tricot, C. (eds.) Fractals in Engineering. Springer, Berlin (1997)
[37] Lévy Véhel, J., Seuret, S.: The 2-microlocal formalism. In: [30], pp. 153–215 · Zbl 1093.28006
[38] Lévy Véhel J., Tricot C.: On various multifractal sprectra. In: Bandt, C., Mosco, U., Zähle, M.(eds) Fractal Geometry and Stochastics III., pp. 23–42. Birkhäuser, Basel (2004) · Zbl 1092.28005
[39] Lévy Véhel J., Vojak R.: Multifractal analysis of Choquet capacities. Adv. Appl. Math. 20, 1–43 (1998) · Zbl 0894.28004 · doi:10.1006/aama.1996.0517
[40] Mandelbrot B.B.: Intermittent turbulence in self-similar cascades: divergence of hight moments and dimension of the carrier. J. Fluid Mech. 62, 331–358 (1974) · Zbl 0289.76031 · doi:10.1017/S0022112074000711
[41] Mandelbrot B.B.: Multifractals and 1/f Noise. Springer, New York (1999) · Zbl 0956.28005
[42] Olsen, L.: Random Geometrically Graph Directed Self-Similar Multifractals. Pitman Research Notes in Math. Series, vol. 307. Longman Scientific and Technical, London (1994) · Zbl 0801.28002
[43] Olsen L.: A multifractal formalism. Adv. Math. 116, 82–196 (1996) · Zbl 0841.28012 · doi:10.1006/aima.1995.1066
[44] Olsen, L.: Multifractal geometry. In: Fractal Geometry and Stochastics II (Greifswald/Koserow, 1998). Progress in Probability, vol. 46, pp. 3–37. Birkhäuser, Basel (2000) · Zbl 0981.28002
[45] Parisi, G., Frisch, U.: Fully developed turbulence and intermittency inturbulence, and predictability in geophysical fluid dynamics and climate dynamics. In: Ghil, M. (ed.) International School of ”Enrico Fermi”, Course 88, pp. 84–88. North-Holland, Amsterdam (1985)
[46] Pearse E.P.J.: Canonical self-similar tilings by iterated function systems. Indiana Univ. Math. J. 56, 3151–3170 (2007) · Zbl 1143.28006 · doi:10.1512/iumj.2007.56.3220
[47] Rock, J.A.: Zeta functions, Complex Dimensions of Fractal Strings and Multifractal Analysis of Mass Distributions. Ph.D. Dissertation, University of California, Riverside (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.