×

Two-dimensional incompressible viscous flow around a small obstacle. (English) Zbl 1169.76016

Summary: In this work we study the asymptotic behavior of viscous incompressible 2D flow in the exterior of a small material obstacle. We fix the initial vorticity \(\omega_{0}\) and the circulation \(\gamma\) of the initial flow around the obstacle. We prove that, if \(\gamma\) is sufficiently small, the limit flow satisfies the full-plane Navier-Stokes system, with initial vorticity \(\omega_{0} + \gamma\delta\), where \(\delta\) is the standard Dirac measure. The result should be contrasted with the corresponding inviscid result obtained by the authors [Commun. Partial Differ. Equations 28, No. 1–2, 349–379 (2003; Zbl 1094.76007)], where the effect of the small obstacle appears in the coefficients of the PDE and not only in the initial data. The main ingredients of the proof are \(L^{p} - L^{q}\) estimates for the Stokes operator in an exterior domain, a priori estimates inspired on Kato’s fixed point method, energy estimates, renormalization and interpolation.

MSC:

76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35Q35 PDEs in connection with fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids

Citations:

Zbl 1094.76007
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Batchelor G.K. (1999) An introduction to fluid dynamics, 2nd paperback edn. Cambridge Mathematical Library, Cambridge University Press, Cambridge
[2] Benfatto G., Esposito R., Pulvirenti M. (1985) Planar Navier–Stokes flow for singular initial data. Nonlinear Anal 9(6): 533–545 · Zbl 0621.76027 · doi:10.1016/0362-546X(85)90039-2
[3] Chemin J.-Y. (1996) A remark on the inviscid limit for two-dimensional incompressible fluids. Comm. Part. Differ. Eq. 21, 1771–1779 · Zbl 0876.35087 · doi:10.1080/03605309608821245
[4] Cottet G.-H. (1986) Équations de Navier–Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sci. Paris Sér. I Math. 303(4): 105–108 · Zbl 0606.35065
[5] Dan W., Shibata Y. (1999) On the L q –L r estimates of the Stokes semigroup in a two-dimensional exterior domain. J. Math. Soc. Japan 51(1): 181–207 · Zbl 0924.35094 · doi:10.2969/jmsj/05110181
[6] Dan W., Shibata Y. (1999) Remark on the L q -L estimate of the Stokes semigroup in a 2-dimensional exterior domain. Pac. J. Math. 189(2): 223–239 · Zbl 0931.35021 · doi:10.2140/pjm.1999.189.223
[7] Gallagher I., Gallay T. (2005) Uniqueness for the two-dimensional Navier–Stokes equation with a measure as initial vorticity. Math. Ann. 332, 287–327 · Zbl 1096.35102 · doi:10.1007/s00208-004-0627-x
[8] Gallagher, I., Gallay, T., Lions, P.-L.: On the uniqueness of the solution of the two-dimensional Navier–Stokes equation with a Dirac mass as initial vorticity. ArXiV preprint math.AP/0410344 (2004)
[9] Gallay T., Wayne C.E. (2002) Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on \(\mathbb{R}^{2}\) . Arch. Ration. Mech. Anal. 163(3): 209–258 · Zbl 1042.37058 · doi:10.1007/s002050200200
[10] Gallay T., Wayne C.E. (2005) Global stability of vortex solutions of the two-dimensional Navier–Stokes equations. Comm. Math. Phys. 255, 97–129 · Zbl 1139.35084 · doi:10.1007/s00220-004-1254-9
[11] Giga Y. (1981) Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178, 297–329 · Zbl 0461.47019 · doi:10.1007/BF01214869
[12] Giga Y., Miyakawa T., Osada H. (1988) Two-dimensional Navier–Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104(3): 223–250 · Zbl 0666.76052 · doi:10.1007/BF00281355
[13] Iftimie D., Lopes Filho M.C., Nussenzveig Lopes H.J. (2003) Two dimensional incompressible ideal flow around a small obstacle. Comm. Part. Differ. Eqn. 28, 349–379 · Zbl 1094.76007 · doi:10.1081/PDE-120019386
[14] Kato T. (1994) The Navier–Stokes equation for an incompressible fluid in \(\mathbb{R}^{2}\) with a measure as the initial vorticity. Differ. Integral Eqn. 7(3–4): 949–966 · Zbl 0826.35094
[15] Kato T., Fujita H. (1962) On the nonstationary Navier–Stokes system. Rend. Sem. Mat. Univ. Padova 32, 243–260 · Zbl 0114.05002
[16] Kelliher J. (2004) The inviscid limit for two-dimensional incompressible fluids with unbounded vorticity. Math. Res. Lett. 11, 519–528 · Zbl 1112.76007
[17] Kozono H., Yamazaki M. (1995) Local and global unique solvability of the Navier–Stokes exterior problem with Cauchy data in the space L n, Houst. J. Math. 21(4): 755–799 · Zbl 0848.35099
[18] Ladyzhenskaya O.(1969) The Mathematical Theory of Viscous Incompressible Flow, 2nd english edn. Gordon and Breach, New York · Zbl 0184.52603
[19] Majda A. (1993) Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana Univ. Math. J. 42, 921–939 · Zbl 0791.76015 · doi:10.1512/iumj.1993.42.42043
[20] Majda A., Bertozzi A. Vorticity and incompressible flow. In: Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002) · Zbl 0983.76001
[21] Maremonti P., Solonnikov V.A. (1997) On nonstationary Stokes problem in exterior domains. Ann. Sc. Norm. Super Pisa Cl. Sci. (4) 24(3): 395–449 · Zbl 0958.35103
[22] Mazy’a, V., Nazarov, S., Plamenevskij, B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vols. 1 and 2. Birkhauser Verlag, Basel (2000)
[23] Temam R. Navier–Stokes equations. Theory and numerical analysis. With an appendix by F. Thomasset. In: Studied in Mathematics and its Applications, vol. 2, 3rd edn. North-Holland Publishing Co., Amsterdam (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.