×

Utility of gambling when events are valued: An application of inset entropy. (English) Zbl 1168.91336

Summary: The present theory leads to a set of subjective weights such that the utility of an uncertain alternative (gamble) is partitioned into three terms involving those weights-a conventional subjectively weighted utility function over pure consequences, a subjectively weighted value function over events, and a subjectively weighted function of the subjective weights. Under several assumptions, this becomes one of several standard utility representations, plus a weighted value function over events, plus an entropy term of the weights. In the finitely additive case, the latter is the Shannon entropy; in all other cases it is entropy of degree not 1. The primary mathematical tool is the theory of inset entropy.

MSC:

91A60 Probabilistic games; gambling
91B16 Utility theory
94A17 Measures of information, entropy
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aczél J. (1965), A remark on functional dependence. Journal of Mathematical Psychology 2: 125–127 · Zbl 0142.11203 · doi:10.1016/0022-2496(65)90019-2
[2] Aczél, J. (1980), Information functions on open domain. III, Comptes rendus mathématiques de l’Académie des sciences, La Société royale du Canada (Mathematical Reports of the Academy of Science, The Royal Society of Canada) 2, 281–285.
[3] Aczél J. (1981), Notes on generalized information functions. Aequationes Mathematicae 22: 97–107 · doi:10.1007/BF02190166
[4] Aczél J., Daróczy Z. (1975), On Measures of Information and Their Characterizations. Academic Press, New York · Zbl 0345.94022
[5] Aczél J., Daróczy Z. (1978), A mixed theory of information. I. Symmetric, recursive and measurable entropies of randomized systems of events, R.A.I.R.O. Informatique théorique/Theoretical Computer Science 12: 149–155 · Zbl 0382.94012
[6] Aczél J., Kannappan P. (1978), A mixed theory of information. III. Inset entropies of degree {\(\beta\)}. Information and Control 39: 315–322 · Zbl 0393.94011 · doi:10.1016/S0019-9958(78)90659-9
[7] Aczél J., Maksa Gy., Ng C.T., Páles Z. (2000), A functional equation arising from ranked additive and separable utility. Proceedings of the American Mathematical Society 129: 989–998 · Zbl 0967.39007 · doi:10.1090/S0002-9939-00-05686-0
[8] Daróczy Z. (1970), Generalized information functions. Information and Control 16: 36–51 · Zbl 0205.46901 · doi:10.1016/S0019-9958(70)80040-7
[9] Ebanks B., Kannappan P., Ng C.T. (1988), Recursive inset entropies of multiplicative type on open domains. Aequationes Mathematicae 36: 268–293 · Zbl 0659.39002 · doi:10.1007/BF01836096
[10] Havrda J., Charvát F. (1967), Quantification method of classification processes. Concept of structural {\(\alpha\)}-entropy. Kybernetika 3: 30–35 · Zbl 0178.22401
[11] Karni E. (1985), Decision Making Under Uncertainty: The Case of State-Dependent Preferences. Harvard University Press, Cambridge, MA · Zbl 0553.90004
[12] Krantz D.H., Luce R.D., Suppes P., Tversky A. (1971), Foundations of Measurement, Vol I. Academic Press, San Diego, CA: To be reissued in 2007 by Dover Publications, Mineola, NY. · Zbl 0232.02040
[13] Luce R.D. (1959/2005), Individual Choice Behavior: A Theoretical Analysis. John Wiley and Sons, New York. Reprinted by Dover Publications, Mineola, NY. · Zbl 0093.31708
[14] Luce, R. D. (2000), Utility of Gains and Losses: Measurement-Theoretical and Experimental Approaches, Erlbaum, Mahwah, NJ. Errata: see Luce’s web page at http:www.imbs.uci.edu/personnel/luce/luce.htm . · Zbl 0997.91500
[15] Luce R.D., Marley A.A.J. (2000), On elements of chance. Theory & Decision 49: 97–126 · Zbl 1002.91006 · doi:10.1023/A:1005288012381
[16] Luce, R. D., Ng, C. T., Marley, A. A. J. and Aczél, J. (in press a), Utility of gambling I: Entropy modified linear weighted utility, Economic Theory · Zbl 1136.91008
[17] Luce, R. D., Ng, C. T., Marley, A. A. J. and Aczél, J. (in press b), Utility of gambling II: Risk, paradoxes, and data, Economic Theory · Zbl 1137.91010
[18] Marley A.A.J., Luce R.D. (2005), Independence properties vis-à-vis several utility representations. Theory & Decision 58: 77–143 · Zbl 1137.91382 · doi:10.1007/s11238-005-2460-4
[19] Ng, C. T. (1980), Information functions on open domain. II, Comptes rendus mathématiques de l’Académie des sciences, La Société royale du Canada (Mathematical Reports of the Academy of Science, The Royal Society of Canada) 2, 155–158.
[20] Ng C.T. (1998), An application of a uniqueness theorem to a functional equation arising from measuring utility. Journal of Mathemetical Analysis and Applications 228: 66–72 · Zbl 0915.39012 · doi:10.1006/jmaa.1998.6116
[21] Shannon, C. E. (1948), A mathematical theory of communication, Bell System Technical Journal, 27, 379–423, 623–656. · Zbl 1154.94303
[22] Suyari H. (2002), On the most concise set of axioms and the uniqueness theorem of Tsallis entropy. Journal of Physics A Mathematical and General 35: 10731–10738 · Zbl 1043.94005 · doi:10.1088/0305-4470/35/50/304
[23] Tsallis C. (1988), Possible generalization of Boltzmann–Gibbs statistics. Journal of Statistical Physics 52: 479–487 · Zbl 1082.82501 · doi:10.1007/BF01016429
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.