×

Improved coupling of finite shell elements and 3D boundary elements. (English) Zbl 1168.74452

Summary: A strategy for the mixed-dimensional coupling of finite shell elements and 3D boundary elements is presented. The stiffness formulation for the boundary element domain is generated by the 3D symmetric Galerkin boundary element method and thus can be assembled to the global finite element formulation. Based on the equality of work at the coupling interface, coupling equations in an integral sense are derived for curved coupling interfaces and formulated as multipoint constraints in terms of kinematic quantities. Several examples show the highly accurate results compared to a strict kinematic coupling technique.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics
74K25 Shells

Software:

ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ABAQUS Analysis User’s Manual, Version 6.4., ABAQUS. (2003)
[2] Bonnet M. (1995) Boundary Integral Equation Methods for Solids and Fluids. Wiley, Chichester
[3] Bonnet M. (1995) Regularized direct and indirect symmetric variational BIE formulations for three-dimensional elasticity. Eng. Anal. Bound. Elem. 15, 93–102
[4] Bonnet M., Maier G., Polizzotto C. (1998) Symmetric Galerkin boundary element methods. Appl. Mech. Rev. 51(11): 669–704
[5] Costabel M. (1987). Symmetric methods for the coupling for finite elements and boundary elements. In: Brebbia C.A., Wendland W.L., Kuhn G. (eds). Boundary Elements IX, Vol. 1. Springer, Berlin Heidelberg New York
[6] Elleithy W.M., Al-Gahtani H.J. (2000) An overlapping domain decomposition approach for coupling the finite and boundary element methods. Eng. Anal. Bound. Elem. 24, 391–398 · Zbl 1118.76332
[7] Elleithy, W.M., Tanaka, M. Interface relaxation algorithms for coupling the FEM and BEM. In: 24th World Conference on Boundary Element Method, BEM 24, pp. 721–730. Sinatra, Portugal (2002) · Zbl 1011.65083
[8] Flügge W. (1973) Stresses in Shells, 2nd edn. Springer, Berlin Heidelberg New York · Zbl 0257.73056
[9] Haas, M. Symmetrische Kopplung von Finite-Elemente-Schalenstrukturen mitder 3D-Randelementmethode. VDI, Düsseldorf (2004)
[10] Haas M., Kuhn G. (2002) A symmetric Galerkin BEM implementation for 3D elastostatic problems with an extension to curved elements. Comp. Mech.28(3–4): 250–259 · Zbl 1062.74059
[11] Haas, M., Kuhn, G. A general strategy for the mixed-dimensional, symmetric coupling of Gallego, R. Aliabadi, M.H. (eds)FEM and BEM. In: Advances in Boundary Element Techniques IV, Proceedings of the International Conference on Boundary Element Techniques IV, Granada, Spain, pp. 333–338 ISBN 0904188965, Granada (2003)
[12] Haas, M., Kuhn, G. Mixed-dimensional FEM/BEM coupling. In: Ren, Z., Kuhn, G., Skerget, L., Hribersek, M. (eds.) Advanced Computational Engineering Mechanics: Proceedings of the 1st Workshop, Maribor, Slovenia, 9–1 October 2003, pp. 91–100 Faculty of Mechanical Engineering, Maribor (2003) · Zbl 1054.74729
[13] Haas M., Kuhn G. (2003) Mixed-dimensional, symmetric coupling of FEM and BEM. Eng. Anal. Bound. Elem. 27: 575–582 · Zbl 1054.74729
[14] Haas, M., Kuhn, G. Symmetric coupling for finite shell elements and 3d boundary elements. In: Brebbia, C.A., Poljak, D., Roje, V. (eds.) Boundary Elements XXV, Proceedings of the 25th International Conference on the Boundary Element Method BEM XXV, Split, Croatia, WITPress, Southhampton (2003) · Zbl 1054.74729
[15] Hartmann F. (1989) Introduction to Boundary Elements. Theory and Applications. Springer, Berlin Heidelberg New York · Zbl 0693.73054
[16] Helldörfer, B., Haas, M., Kuhn, G. Kopplung eines Finite Elemente Systems mit der Randelementmethode. Internal Report No 2004/1. Chair of Applied Mechanics, University of Erlangen-Nuremberg, Erlangen (2004) · Zbl 1168.74452
[17] Helldörfer, B., Kuhn, G. Coupled FEM/BEM analysis of fracture mechanical problems. In: Kuhn, G., Ren, Z., Skerget, L., Hribersek, M. (eds.) Advanced Computational Engineering Mechanics: Proceedings of the 2nd Workshop, Erlangen, Germany, 30 June–2 July 2005, pp. 63–72, Erlangen (2005)
[18] Holzer S.M. (1992) Das symmetrische Randelementverfahren: Numerische Realisierung und Kopplung mit der Finite-Elemente-Methode zur elastoplastischen Strukturanalyse. Technische Universität München, Munich
[19] Holzer S.M. (1994) A p-extension of the symmetric boundary element method. Comput. Methods Appl. Mech. Eng. 115, 339–357
[20] Kolk, K., Kuhn, G. A predictor-corrector scheme for the optimization of 3D crack front shapes. In: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/j.1460-2695.2004.00838.x (2004)
[21] McCune R.W., Armstrong C.G., Robinson D.J. (2000) Mixed-dimensional coupling in finite element models. Int. J. Numer. Methods Eng. 49, 725–750 · Zbl 0967.74067
[22] Schaeffer H.G. (1984) MSC/NASTRAN Primer. Static and Normal Modes Analysis 4th edn. Schaeffer Analysis, Mount Vernon
[23] Shim, K.W., Monaghan, D.J., Armstrong, C.G. Mixed dimensional coupling in finite element stress analysis. In: 10th International Meshing Roundtable 2001, pp. 269–277, Sandia National Laboratories, Newport Beach, CA (2001)
[24] Sladek V., Sladek J. (1998). Introductory notes on singular integrals. In: Sladek V., Sladek J. (eds). Singular Integrals in Boundary Element Methods. Computational Mechanics Publications, Southampton, pp. 1–31 · Zbl 0961.74072
[25] Zienkiewicz O.C. (1979) The Finite Element Method 3rd edn. McGraw-Hill, London · Zbl 0435.73073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.