×

\(r\)-minimal submanifolds in space forms. (English) Zbl 1168.53029

Let \(x: M\rightarrow \mathbb R^{n+p}(c)\) be an \(n\)-dimensional compact, possibly with boundary, submanifold in an (\(n+p\))-dimensional space form \(\mathbb R^{n+p}(c)\). Assume that \(r\) is even and \(r \in\{0, 1, \dots, n-1\}\), the authors introduce the \(r\)-th mean curvature function \(S_r\) and (\(r+1\))-th mean curvature vector field \(\mathbf{S}_{r+1}\). A hypersurface is called an \(r\)-minimal submanifold if \(\mathbf{S}_{r+1}\equiv0\), a 0-minimal submanifold is nothing but an ordinary minimal submanifold.
The authors define a functional \(J_r(x)=\int_M F_r(S_0, S_2, \dots, S_r)dv\) of \(x: M\rightarrow \mathbb R^{n+p}(c)\). By calculation of the first variational formula, the authors obtain that \(x\) is a critical point of \(J_r\) if and only if \(x\) is \(r\)-minimal. They also calculate the second variational formula of \(J_r\) and prove that there exists no compact without boundary stable \(r\)-minimal submanifold with \({\mathbf S}_r> 0\) in \({\mathbf S}^{n+p}\). When \(r = 0\), noting that \(S_0= 1\), this result reduces to J. Simons’ result [Ann. Math. (2) 88, 62–105 (1968; Zbl 0181.49702)]: there exists no compact without boundary stable minimal submanifold in the unit sphere \(S^{n+p}\).
In this paper, the obtained results are original and very interesting. So this paper can be recommended to everyone who is interested in the study of \(r\)-minimal submanifolds in space forms.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C40 Global submanifolds

Citations:

Zbl 0181.49702
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alencar H., do Carmo M., Colares A.G. (1993). Stable hypersurfaces with constant scalar curvature. Math. Z. 213: 117–131 · Zbl 0792.53057 · doi:10.1007/BF03025712
[2] Alencar H., do Carmo M., Santos W. (2002). A gap theorem for hypersurfaces of the sphere with constant scalar curvature one. Comment. Math. Helv. 77: 549–562 · Zbl 1032.53045 · doi:10.1007/s00014-002-8351-1
[3] Alencar H., do Carmo M., Elbert M.F. (2003). Stability of hypersurfaces with vanishing r-mean curvatures in Euclidean spaces. J. Reine Angew. Math. 554: 201–216 · Zbl 1093.53063 · doi:10.1515/crll.2003.006
[4] Alencar H., Rosenberg H., Santos W (2004). On the Gauss map of hypersurfaces with constant scalar curvature in spheres. Proc. Amer. Math. Soc. 132: 3731–3739 · Zbl 1061.53036 · doi:10.1090/S0002-9939-04-07493-3
[5] Barbosa J.L.M., Colares A.G. (1997). Stability of hypersurfaces with constant r-mean curvature. Ann. Global Anal. Geom. 15: 277–297 · Zbl 0891.53044 · doi:10.1023/A:1006514303828
[6] Barbosa J.L.M., do Carmo M. (2005). On stability of cones in R n+1 with zero scalar curvature. Ann. Global Anal. Geom. 28: 107–127 · Zbl 1082.53061 · doi:10.1007/s10455-005-0039-5
[7] Barbosa J.L., do Carmo M., Eschenburg J. (1988). Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197: 123–138 · Zbl 0653.53045 · doi:10.1007/BF01161634
[8] Cheng S.Y., Yau S.T. (1977). Hypersurfaces with constant scalar curvature. Math. Ann. 225: 195–204 · Zbl 0349.53041 · doi:10.1007/BF01425237
[9] Chern, S.S.: Minimal Submanifolds in a Riemannian Manifold (mimeographed). University of Kansas, Lawrence, (1968).
[10] do Carmo M., Elbert M.F. (2004). On stable complete hypersurfaces with vanishing r-mean curvature. Tohoku Math. J. 56(2): 155–162 · Zbl 1062.53052 · doi:10.2748/tmj/1113246548
[11] Grosjean J.F. (2002). Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds. Pacific J. Math. 206: 93–112 · Zbl 1050.58024 · doi:10.2140/pjm.2002.206.93
[12] Guo, Z., Li, H.: A variational problem for submanifolds in a sphere. To appear in Monatsh. Mat. (2007). · Zbl 1186.53066
[13] Guo Z., Li H., Wang C.P. (2001). The second variational formula for Willmore submanifolds in S n . Results in Math. 40: 205–225 · Zbl 1163.53312
[14] Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press (1989)
[15] Hu Z.J., Li H.: Willmore submanifolds in Riemannian manifolds. In: Proceedings of the Workshop, Contem. Geom., Related Topics, pp. 251–275. World Scientific, May 2002 · Zbl 1076.53071
[16] Li A.M. (1985). A class of variational problems and integral formula in Riemannian manifold. Chinese Acta Math. Sinica 28(2): 145–153 · Zbl 0587.53053
[17] Li H. (1996). Hypersurfaces with constant scalar curvature in space forms Math. Ann. 305: 665–672 · Zbl 0864.53040
[18] Li H. (1997). Global rigidity theorems of hypersurface. Ark. Math. 35: 327–351 · Zbl 0920.53028 · doi:10.1007/BF02559973
[19] Li H. (2001). Willmore hypersurfaces in a sphere. Asian J. Math. 5: 365–378 · Zbl 1025.53031
[20] Li H. (2002). Willmore submanifolds in a sphere. Math. Res. Lett. 9: 771–790 · Zbl 1056.53040
[21] Reilly R. (1973). Variation properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differential. Geom. 8: 465–477 · Zbl 0277.53030
[22] Reilly R. (1977). On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comment. Math. Helvetici. 52: 525–533 · Zbl 0382.53038 · doi:10.1007/BF02567385
[23] Rosenberg H. (1993). Hypersurfaces of constant curvature in space forms. Bull. Soc. Math. 117: 211–239 · Zbl 0787.53046
[24] Simons J. (1968). Minimal varieties in Riemmannian manifolds. Ann. Math. 2nd Ser. 88(1): 62–105 · Zbl 0181.49702 · doi:10.2307/1970556
[25] Takahashi T. (1966). Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18: 380–385 · Zbl 0145.18601 · doi:10.2969/jmsj/01840380
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.