×

Permanence and extinction for a nonautonomous SIRS epidemic model with time delay. (English) Zbl 1168.34358

Summary: A nonautonomous SIRS epidemic model with time delay is studied. We introduce some new threshold values \(R_{*}\) and \(R^{*}\) and further obtain the disease will be permanent when \(R_{*}>1\) and the disease extinct when \(R^{*}<1\). Using the method of Liapunov functional, some sufficient conditions are derived for the global attractivity of the system. The known results are extended.

MSC:

34K20 Stability theory of functional-differential equations
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Naresh, R.; Tripathi, A.; Omar, S., Modelling the spread of AIDS epidemic with vertical transmission, Appl. Math. Comput., 178, 262-272 (2006) · Zbl 1096.92038
[2] Meng, X.; Chen, L.; Cheng, H., Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination, Appl. Math. Comput., 186, 516-529 (2007) · Zbl 1111.92049
[3] Kermark, M. D.; Mckendrick, A. G., Contributions to the mathematical theory of epidemics. Part I, Proc. R. Soc. A, 115, 5, 700-721 (1927) · JFM 53.0517.01
[4] Diekmann, O.; Heesterbeek, J. A.P., Mathematical Epidemiology of Infectious Diseases: Model Building Analysis, and Interpretation (2000), John Wiley & Sons Ltd.: John Wiley & Sons Ltd. Chichester, New York · Zbl 0997.92505
[5] Anderson, R. M.; May, R. M., Population biology of infectious diseases. Part I, Nature, 280, 361-367 (1979)
[6] Capasso, V., Mathematical structures of epidemic systems, Lecture Notes in Biomathematics, vol. 97 (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0798.92024
[7] Ma, Z.; Zhou, Y.; Wang, W.; Jin, Z., Mathematical modelling and research of epidemic dynamical systems (2004), Science Press: Science Press Beijing
[8] Beretta, E.; Takeuchi, Y., Convergence results in SIR epidemic models with varying population sizes, Nonlinear Anal., 28, 1909-1921 (1997) · Zbl 0879.34054
[9] Takeuchi, Y.; Ma, W.; Beretta, E., Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42, 931-947 (2000) · Zbl 0967.34070
[10] Ma, W.; Takeuchi, Y.; Hara, T.; Beretta, E., Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., 54, 581-591 (2002) · Zbl 1014.92033
[11] Ma, W.; Song, M.; Takeuchi, Y., Global stability of an SIR epidemic model with time delay, Appl. Math. Lett., 17, 1141-1145 (2004) · Zbl 1071.34082
[12] Wang, W., Global behavior of an SEIRS epidemic model with time delays, Appl. Math. Lett., 15, 423-428 (2002) · Zbl 1015.92033
[13] Hale, J. K., Theory of Functional Differential Equations (1977), Springer-Verlag: Springer-Verlag New York · Zbl 0425.34048
[14] Teng, Z.; Chen, L., The positive periodic solutions of periodic Kolmogorov type systems with delays, Acta Math. Appl. Sin., 22, 3, 446-456 (1999), (in Chinese) · Zbl 0976.34063
[15] Teng, Z.; Chen, L., Permanence and extinction of periodic predator-prey systems in a patchy environment with delay, Nonlinear Anal.: RWA, 4, 335-364 (2003) · Zbl 1018.92033
[16] Teng, Z.; Li, Z.; Jiang, H., Permanence criteria in non-autonomous predator-prey Kolmogorov systems and its applications, Dynam. Syst., 19, 171-194 (2004) · Zbl 1066.34048
[17] Teng, Z., Uniform persistence of the periodic predator-prey Lotka-Volterra systems, Appl. Anal., 72, 339-352 (1999) · Zbl 1031.34045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.