×

Numerical boundaries for some classical Banach spaces. (English) Zbl 1167.46008

Summary: J.Globevnik [Math.Proc.Camb.Philos.Soc.85, 291–303 (1979; Zbl 0395.46040)] gave the definition of boundary for a subspace \(\mathcal A \subset \mathcal C_b(\Omega)\). This is a subset of \(\Omega \) that is a norming set for \(\mathcal A\). We introduce the concept of numerical boundary. For a Banach space \(X\), a subset \(B\subset \Pi (X)\) is a numerical boundary for a subspace \(\mathcal A \subset \mathcal C _b(B_X, X)\) if the numerical radius of \(f\) is the supremum of the modulus of all the evaluations of \(f\) at \(B\), for every \(f\) in \(\mathcal A\). We give examples of numerical boundaries for the complex spaces \(X=c_{0}\), \(\mathcal C(K)\) and \(d_{*}(w,1)\), the predual of the Lorentz sequence space \(d(w,1)\). In all these cases (if \(K\) is infinite), we show that there are closed and disjoint numerical boundaries for the space of the functions from \(B_X\) to \(X\) which are uniformly continuous and holomorphic on the open unit ball and there is no minimal closed numerical boundary. In the case of \(c_{0}\), we characterize the numerical boundaries for that space of holomorphic functions.

MSC:

46B04 Isometric theory of Banach spaces
46E15 Banach spaces of continuous, differentiable or analytic functions
47A12 Numerical range, numerical radius

Citations:

Zbl 0395.46040
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acosta, M. D., Boundaries for spaces of holomorphic functions on \(C(K)\), Publ. Res. Inst. Math. Sci., 42, 27-44 (2006) · Zbl 1108.46034
[2] Acosta, M. D.; Lourenço, M. L., Šilov boundary for holomorphic functions on some classical Banach spaces, Studia Math., 179, 27-39 (2007) · Zbl 1124.46023
[3] Acosta, M. D.; Moraes, L., On boundaries for spaces of holomorphic functions on the unit ball of a Banach space, (Randrianantoanina, B.; Randrianantoanina, N., Banach Spaces and Their Applications in Analysis (2007), Walter de Gruyter: Walter de Gruyter Berlin), 229-240 · Zbl 1138.46034
[4] Acosta, M. D.; Moraes, L.; Romero Grados, L., On boundaries on the predual of the Lorentz space, J. Math. Anal. Appl., 336, 470-479 (2007) · Zbl 1127.46036
[5] Aron, R. M.; Choi, Y. S.; Lourenço, M. L.; Paques, O. W., Boundaries for algebras of analytic functions on infinite dimensional Banach spaces, (Lin, B. L.; Johnson, W. B., Banach Spaces. Banach Spaces, Contemp. Math., vol. 144 (1993), Amer. Math. Soc.), 15-22 · Zbl 0805.46032
[6] Bishop, E., A minimal boundary for function algebras, Pacific J. Math., 9, 629-642 (1959) · Zbl 0087.28503
[7] Bonsall, F. F.; Duncan, J., Numerical Ranges II, London Math. Soc. Lecture Note Ser., vol. 10 (1973), Cambridge Univ. Press · Zbl 0262.47001
[8] Choi, Y. S.; García, D.; Kim, S. G.; Maestre, M., Norm or numerical radius attaining polynomials on \(C(K)\), J. Math. Anal. Appl., 295, 80-96 (2004) · Zbl 1059.46026
[9] Choi, Y. S.; Han, K. H., Boundaries for algebras of holomorphic functions on Marcinkiewicz sequence spaces, J. Math. Anal. Appl., 323, 1116-1133 (2006) · Zbl 1117.46034
[10] Choi, Y. S.; Han, K. H.; Lee, H. J., Boundaries for algebras of holomorphic functions on Banach spaces, Illinois J. Math., 51, 883-896 (2007) · Zbl 1214.46033
[11] Choi, Y. S.; Kim, S. G., Norm or numerical radius attaining multilinear mappings and polynomials, J. Lond. Math. Soc., 54, 135-147 (1996) · Zbl 0858.47005
[12] Globevnik, J., On interpolation by analytic maps in infinite dimensions, Math. Proc. Cambridge Philos. Soc., 83, 243-252 (1978) · Zbl 0369.46051
[13] Globevnik, J., Boundaries for polydisc algebras in infinite dimensions, Math. Proc. Cambridge Philos. Soc., 85, 291-303 (1979) · Zbl 0395.46040
[14] Harris, L., The numerical range of holomorphic functions in Banach spaces, Amer. J. Math., 93, 1005-1119 (1971) · Zbl 0237.58010
[15] Moraes, L. A.; Romero Grados, L., Boundaries for algebras of holomorphic functions, J. Math. Anal. Appl., 281, 575-586 (2003) · Zbl 1037.46051
[16] Rodríguez Palacios, A., Numerical ranges of uniformly continuous functions on the unit sphere of a Banach space, J. Math. Anal. Appl., 297, 472-476 (2004) · Zbl 1068.46005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.