×

HIV dynamics: analysis and robust multirate MPC-based treatment schedules. (English) Zbl 1166.92025

Summary: Analysis and control of human immunodeficiency virus (HIV) infections have attracted the interests of mathematicians and control engineers during the recent years. Several mathematical models exist and adequately explain the interactions of the HIV infection and the immune system up to the stage of clinical latency, as well as viral suppression and immune system recovery after treatment therapy. However, none of these models can completely exhibit all that is observed clinically and account the full course of infection. Besides model inaccuracies that HIV models suffer from, some disturbances/uncertainties from different sources may arise in the modelling.
We study the basic properties of a 6-dimensional HIV model that describes the interactions of HIV with two target cells, \(CD4^{+}\) T cells and macrophages. The disturbances are modelled in the HIV model as additive bounded disturbances. Highly Active AntiRetroviral Therapy (HAART) is used. The control input is defined to be dependent on the drug dose and drug efficiency. We developed treatment schedules for HIV infected patients by using a robust multirate Model Predictive Control (MPC)-based method. The MPC is constructed on the basis of an approximate discrete-time model of the nominal model. We established a set of conditions, which guarantee that the multirate MPC practically stabilizes the exact discrete-time model with disturbances.
The proposed method is applied to the stabilization of the uninfected steady state of the HIV model. The results of simulations show that, after initiation of HAART with a strong dosage, the viral load drops quickly and can be kept under a suitable level with mild dosage of HAART. Moreover, the immune system is recovered with some fluctuations due to the presence of disturbances.

MSC:

92C50 Medical applications (general)
93C95 Application models in control theory
34D23 Global stability of solutions to ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
93B25 Algebraic methods
37N25 Dynamical systems in biology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Adams, B. M.; Banks, H. T.; Davidian, M.; Kwon, H.-D.; Tran, H. T.; Wynne, S. N.; Rosenberg, E. S., HIV dynamics: Modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., 184, 10-49 (2005) · Zbl 1075.92030
[2] Allgöwer, F.; Badgwell, T. A.; Qin, J. S.; Rawlings, J. B.; Wright, S. J., Nonlinear predictive control and moving horizon estimation-an introductory overview, (Frank, P. M., Advances in Control (1999), Springer: Springer Berlin), 391-449
[3] Alvarez-Ramirez, J.; Meraz, M.; Velasco-Hernandez, J. X., Feedback control of the chemotherapy of HIV, Int. J. Bifur. Chaos, 10, 9, 2207-2219 (2000) · Zbl 0956.92021
[4] Banks, H. T.; Kwon, H.-D.; Toivanen, J. A.; Tran, H. T., A state-dependent Riccati equation-based estimator approach for HIV feedback control, Optimal Control Appl. Methods, 27, 93-121 (2006)
[5] Brandt, M. E.; Chen, G., Feedback control of a biodynamical model of HIV-1, IEEE Trans. Biom. Engrg., 48, 754-759 (2001)
[6] Caetano, M. A.L.; Yoneyama, T., Short and long period optimization of drug doses in the treatment of AIDS, An. Acad. Brasil. Cienc., 74, 589-597 (2002) · Zbl 1006.92019
[7] Callaway, D. S.; Perelson, A. S., HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64, 29-64 (2002) · Zbl 1334.92227
[8] Chen, H.; Allgöwer, F., A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica, 34, 10, 1205-1217 (1998) · Zbl 0947.93013
[9] Culshaw, R. V.; Ruan, S.; Spiteri, R. J., Optimal HIV treatment by maximising immune response, J. Math. Biol., 48, 5, 545-562 (2004) · Zbl 1057.92035
[10] Elaiw, A. M., Multirate sampling and input-to-state stable receding horizon control for nonlinear sampled-data systems, Nonlinear Anal., 67, 1637-1648 (2007) · Zbl 1113.93055
[11] Elaiw, A. M., Receding horizon control method applied to antiviral treatment of AIDS, Miskolc Math. Notes, 5, 173-186 (2004) · Zbl 1075.93525
[12] Elaiw, A. M.; Kiss, K.; Caetano, M. A.L., Stabilization of HIV/AIDS model by receding horizon control, J. Appl. Math. Comput., 18, 1-2, 95-112 (2005) · Zbl 1071.92034
[13] Fister, K. R.; Lenhart, S.; McNally, J. S., Optimizing chemotherapy in an HIV model, Electron. J. Differential Equations, 1998, 1-12 (1998) · Zbl 1068.92503
[14] Fontes, F. A.C. C., A general framework to design stabilizing nonlinear model predictive controllers, Systems Control Lett., 42, 2, 127-143 (2000) · Zbl 0985.93023
[15] Gyurkovics, É., Receding horizon control via Bolza-type optimization, Systems Control Lett., 35, 3, 195-200 (1998) · Zbl 0909.93064
[16] Gyurkovics, É.; Elaiw, A. M., Stabilization of sampled-data nonlinear systems by receding horizon control via discrete-time approximations, Automatica, 40, 12, 2017-2028 (2004) · Zbl 1077.93044
[17] Gyurkovics, E.; Elaiw, A. M., A stabilizing sampled-data \(ℓ\)-step receding horizon control with application to a HIV/AIDS model, Differential Equations Dynam. Systems, 14, 3-4, 323-352 (2006) · Zbl 1124.93046
[18] Gyurkovics, E.; Elaiw, A. M., Conditions for MPC based stabilization of sampled-data nonlinear systems via discrete-time approximations, Lecture Notes in Control and Inform. Sci., 358, 35-48 (2007) · Zbl 1223.93103
[19] Jeffery, A. M.; Xia, X.; Craig, I. K., Structured treatment interruptions: A control mathematical approach to protocol design, J. Process. Control, 17, 571-594 (2007)
[20] A.M. Jeffery, A control theoretic approach to HIV/AIDS drug dosage design and timing the initiation of therapy, PhD thesis, department of electrical, electronic and computer engineering, University of Pretoria, 2006; A.M. Jeffery, A control theoretic approach to HIV/AIDS drug dosage design and timing the initiation of therapy, PhD thesis, department of electrical, electronic and computer engineering, University of Pretoria, 2006
[21] Jeffrey, A. M.; Xia, X.; Craig, I. K., When to initiate HIV therapy: A control theoretic approach, IEEE Trans. Biom. Engrg., 50, 11, 1213-1220 (2003)
[22] Jeffrey, A. M.; Xia, X., Identifiability of HIV/AIDS models, (Tan, Wai-Yuan; Wu, Hulin, Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention (2005), World Scientific Publishing: World Scientific Publishing Singapore), 255-286 · Zbl 1268.92092
[23] Joshi, H. R., Optimal control of an HIV immunology model, Optimal Control Appl. Methods, 23, 199-213 (2002) · Zbl 1072.92509
[24] Kirschner, D.; Lenhart, S.; Serbin, S., Optimal control of the chemotherapy of HIV, J. Math. Biol., 35, 775-792 (1997) · Zbl 0876.92016
[25] Ko, J. H.; Kim, W. H.; Chung, C. C., Optimized structured treatment interruption for HIV therapy and its performance analysis on controllability, IEEE Trans. Biom. Engrg., 53, 3, 380-386 (2006)
[26] Korobeinikov, A., Global properties of basic virus dynamics models, Bull. Math. Biol., 66, 879-883 (2004) · Zbl 1334.92409
[27] Kwon, H.-D., Optimal treatment strategies derived from a HIV model with drug-resistant mutants, Appl. Math. Comput., 188, 1193-1204 (2007) · Zbl 1113.92035
[28] Ledzewicz, U.; Schättler, H., On optimal controls for a general mathematical model for chemotherapy of HIV, (Proceedings of American Control Conference. Proceedings of American Control Conference, Denver (2003)), 3454-3459
[29] Mayne, D. Q.; Rawlings, J. B.; Rao, C. V.; Scokaert, P. O.M., Constrained model predictive control: Stability and optimality, Automatica, 36, 6, 789-814 (2000) · Zbl 0949.93003
[30] Nešić, D.; Teel, A. R., A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models, IEEE Trans. Automat. Control, 49, 7, 1103-1122 (2004) · Zbl 1365.93281
[31] Nešić, D.; Teel, A. R.; Kokotović, P. V., Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximation, Systems Control Lett., 38, 4-5, 259-270 (1999) · Zbl 0985.93034
[32] Nešić, D.; Laila, D. S., A note on input-to-state stabilization of sampled-data nonlinear systems, IEEE Trans. Automat. Control, 47, 7, 1153-1158 (2002) · Zbl 1364.93730
[33] Perelson, A. S.; Kirschner, D.; De Boer, R., Dynamic of HIV infection of CD \(4^+\) T cells, Math. Biosci., 114, 1, 81-125 (1993) · Zbl 0796.92016
[34] Perelson, A. S.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, D. D., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387, 188-191 (1997)
[35] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 1, 3-44 (1999) · Zbl 1078.92502
[36] Ramratnam, B.; Bonhoeffer, S.; Binley, J.; Hurleyel, A., Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis, Lancet, 354, 20, 1782-1785 (1999)
[37] Shim, H.; Han, S. J.; Jeong, I. S.; Chung, C. C.; Nam, S. W.; Seo, J. H., Optimal scheduling of drug treatment for HIV infection: Continuous dose control and receding horizon control, Internat. J. Control, Autom. and Systems, 1, 401-407 (2003)
[38] Adams, B. M.; Banks, H. T.; Kwon, H.-D.; Tran, H. T., Dynamic multidrug therapies for HIV: Optimal and STI control approaches, Math. Biosci. Eng., 1, 223-241 (2004) · Zbl 1060.92034
[39] Zurakowski, R.; Teel, A. R., A model predictive control based scheduling method for HIV therapy, J. Theoret. Biol., 238, 368-382 (2006) · Zbl 1445.92158
[40] Xia, X., Estimation of HIV/AIDS parameters, Automatica, 39, 1983-1988 (2003) · Zbl 1046.93013
[41] Xia, X.; Moog, C. H., Identifiability of nonlinear systems with application to HIV/AIDS models, IEEE Trans. Automat. Control, 48, 330-336 (2003) · Zbl 1364.93838
[42] Xia, X., Modelling of HIV infection: Vaccine readiness, drug effectiveness and therapeutical failures, J. Process. Control, 17, 253-260 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.