×

On the global asymptotic stability of switched linear time-varying systems with constant point delays. (English) Zbl 1166.34040

Summary: This paper investigates the asymptotic stability of switched linear time-varying systems with constant point delays under not very stringent conditions on the matrix functions of parameters. Such conditions are their boundedness, the existence of bounded time derivatives almost everywhere, and small amplitudes of the appearing Dirac impulses where such derivatives do not exist. It is also assumed that the system matrix for zero delay is stable with some prescribed stability abscissa for all time in order to obtain sufficiency-type conditions of asymptotic stability dependent on the delay sizes. Alternatively, it is assumed that the auxiliary system matrix defined for all the delayed system matrices being zero is stable with prescribed stability abscissa for all time to obtain results for global asymptotic stability independent of the delays. A particular subset of the switching instants is the so-called set of reset instants where switching leads to the parameterization to reset to a value within a prescribed set.

MSC:

34K20 Stability theory of functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Lecture Notes in Control and Information Sciences 269 pp xvi+383– (2001)
[2] DOI: 10.1016/j.amc.2006.09.033 · Zbl 1114.93087
[3] DOI: 10.1016/j.amc.2006.07.048 · Zbl 1108.93062
[4] DOI: 10.1016/j.cnsns.2006.09.006 · Zbl 1221.93209
[5] DOI: 10.1109/TSMCB.2006.874693
[6] DOI: 10.1016/j.fss.2007.11.012 · Zbl 1170.93342
[7] DOI: 10.1016/j.amc.2007.10.055 · Zbl 1146.93021
[8] DOI: 10.1016/j.amc.2007.11.011 · Zbl 1137.92366
[9] DOI: 10.1016/j.amc.2007.11.037 · Zbl 1316.34070
[10] DOI: 10.1016/j.jmaa.2003.08.048 · Zbl 1046.34086
[11] DOI: 10.1016/j.amc.2007.11.030 · Zbl 1156.45008
[12] DOI: 10.1016/j.amc.2007.10.001 · Zbl 1149.34049
[13] DOI: 10.1016/j.neucom.2006.07.014
[14] DOI: 10.1155/2008/698043 · Zbl 1166.65356
[15] DOI: 10.1155/2008/761342 · Zbl 1167.93324
[16] DOI: 10.1155/2008/746951 · Zbl 1149.92329
[17] DOI: 10.1155/2008/706154 · Zbl 1142.92341
[18] DOI: 10.1155/2008/790530 · Zbl 1151.93011
[19] Lecture Notes in Control and Information Sciences 313 pp xviii+271– (2005)
[20] Communications in Control Engineering (2005)
[21] Systems & Control: Foundations & Applications pp xiv+233– (2003)
[22] DOI: 10.1016/j.dam.2006.05.003 · Zbl 1104.93048
[23] Mathematical Modeling and Computation 14 pp xxii+412– (2007)
[24] DOI: 10.1109/TCSI.2002.807514 · Zbl 1368.93272
[25] DOI: 10.1155/2008/389727 · Zbl 1151.34040
[26] DOI: 10.1155/2007/90158 · Zbl 1187.34063
[27] DOI: 10.1155/2007/97608 · Zbl 1146.37368
[28] DOI: 10.1155/DDNS/2006/83489 · Zbl 1098.92057
[29] DOI: 10.1016/j.amc.2007.10.021 · Zbl 1137.92034
[30] Applied Mathematical Modelling 32 (11) pp 2312– (2008) · Zbl 1156.39301
[31] DOI: 10.1155/2008/793512 · Zbl 1149.92029
[32] DOI: 10.1155/2008/592950 · Zbl 1148.92031
[33] DOI: 10.1155/2008/149267 · Zbl 1147.39007
[34] DOI: 10.1155/2008/945109 · Zbl 1149.39003
[35] DOI: 10.1016/j.ecolmodel.2006.11.029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.