×

A self-starting linear multistep method for a direct solution of the general second-order initial value problem. (English) Zbl 1165.65038

Summary: We propose a linear multistep method of order 5 that is self-starting for the direct solution of the general second-order initial value problem (IVP). The method is derived by the interpolation and collocation of the assumed approximate solution and its second derivative at \(x=x_{n+j}, j=1, 2, \dots , r-1\), and \(x=x_{n+j}, j=1, 2, \dots , s-1\), respectively, where \(r\) and \(s\) are the number of interpolation and collocation points, respectively. The interpolation and collocation procedures lead to a system of \((r+s)\) equations involving \((r+s)\) unknown coefficients, which are determined by the matrix inversion approach. The resulting coefficients are used to construct the approximate solution from which multiple finite difference methods are obtained and simultaneously applied to provide a direct solution to IVPs. In particular, the method is implemented without the need for either predictors or starting values from other methods. Numerical examples are given to illustrate the efficiency of the method.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Atkinson K. E., An Introduction to Numerical Analysis, 2. ed. (1989) · Zbl 0718.65001
[2] DOI: 10.1080/00207169908804832 · Zbl 0937.65075 · doi:10.1080/00207169908804832
[3] DOI: 10.1080/00207160108805054 · Zbl 0995.65076 · doi:10.1080/00207160108805054
[4] Awoyemi, D. O. and Kayode, S. J. A maximal order collocation method for direct solution of initial value problems of general second order ordinary differential equations. Proceedings of the Conference. Abuja, Nigeria: National Mathematical Center. · Zbl 1190.65118
[5] Brugnano, L. and Trigiante, D. 1998.Solving Differential Problems by Multi-step Initial and Boundary Value Methods, 280–299. Amsterdam: Gordon and Breach Science Publishers. · Zbl 0934.65074
[6] DOI: 10.1017/S0334270000004574 · Zbl 0578.65071 · doi:10.1017/S0334270000004574
[7] DOI: 10.1080/00207169108804026 · Zbl 0744.65045 · doi:10.1080/00207169108804026
[8] Fatunla S. O., Numerical Methods for Initial Value Problems in Ordinary Differential Equation (1988) · Zbl 0651.65054
[9] Gladwell I., Computational Techniques for Ordinary Differential Equations (1976)
[10] DOI: 10.1007/BF01396335 · Zbl 0307.65053 · doi:10.1007/BF01396335
[11] Henrici P., Discrete Variable Methods for ODEs (1962) · Zbl 0112.34901
[12] Jator S. N., J. Tennessee Acad. Sci. 76 pp 57– (2001)
[13] Jennings, Matrix Computations for Engineers and Scientists (1987)
[14] Lambert J. D., Computational Methods in Ordinary Differential Equations (1973) · Zbl 0258.65069
[15] Lambert J. D., Numerical Methods for Ordinary Differential Systems (1991) · Zbl 0745.65049
[16] DOI: 10.1093/imamat/18.2.189 · Zbl 0359.65060 · doi:10.1093/imamat/18.2.189
[17] DOI: 10.1090/S0025-5718-1989-0971403-5 · doi:10.1090/S0025-5718-1989-0971403-5
[18] Onumanyi P., J. Nig. Math. Soc. 13 pp 37– (1994)
[19] DOI: 10.1080/00207169908804831 · Zbl 0940.65077 · doi:10.1080/00207169908804831
[20] DOI: 10.1016/0898-1221(90)90072-R · Zbl 0702.65069 · doi:10.1016/0898-1221(90)90072-R
[21] DOI: 10.1142/S0129183102003954 · doi:10.1142/S0129183102003954
[22] Simos T. E., New Astronomy 1 (2002)
[23] DOI: 10.1137/0721007 · Zbl 0548.65053 · doi:10.1137/0721007
[24] DOI: 10.1016/j.cam.2005.04.043 · Zbl 1094.65071 · doi:10.1016/j.cam.2005.04.043
[25] Yusuph, Y. and Onumanyi, P. New multiple FDMs through multistep collocation fory”=f(x, y). Proceedings of the conference. Abuja, Nigeria: National Mathematical Center.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.