×

Tails of multivariate Archimedean copulas. (English) Zbl 1165.62038

Summary: A complete and user-friendly directory of tails of Archimedean copulas is presented which can be used in the selection and construction of appropriate models with desired properties. The results are synthesized in the form of a decision tree: Given the values of some readily computable characteristics of the Archimedean generator, the upper and lower tails of the copula are classified into one of three classes each, one corresponding to asymptotic dependence and the other two to asymptotic independence. For a long list of single-parameter families, the relevant tail quantities are computed so that the corresponding classes in the decision tree can easily be determined. In addition, new models with tailor-made upper and lower tails can be constructed via a number of transformation methods. The frequently occurring category of asymptotic independence turns out to conceal a surprisingly rich variety of tail dependence structures.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62G32 Statistics of extreme values; tail inference
62E20 Asymptotic distribution theory in statistics
60G70 Extreme value theory; extremal stochastic processes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Genest, C.; Favre, A.-C., Everything you always wanted to know about copula modeling but were afraid to ask, Journal of Hydrological Engineering, 12, 347-368 (2007)
[2] Joe, H., Multivariate Models and Dependence Concepts (1997), Chapman & Hall: Chapman & Hall London · Zbl 0990.62517
[3] A.J. Mcneil, J. Nes˘lehová, Multivariate Archimedean copulas, \(d\)-monotone functions and \(l_1\)-norm symmetric distributions, The Annals of Statistics (2007) (in press); A.J. Mcneil, J. Nes˘lehová, Multivariate Archimedean copulas, \(d\)-monotone functions and \(l_1\)-norm symmetric distributions, The Annals of Statistics (2007) (in press)
[4] Müller, A.; Scarsini, M., Archimedean copulae and positive dependence, Journal of Mulivariate Analysis, 93, 434-445 (2005) · Zbl 1065.60018
[5] Nelsen, R. B., (An Introduction to Copulas. An Introduction to Copulas, Lecture Notes in Statistics, vol. 139 (1999), Springer-Verlag) · Zbl 0909.62052
[6] Schweizer, B.; Sklar, A., Probabilistic Metric Spaces (1983), North Holland · Zbl 0546.60010
[7] Genest, C.; Mackay, R. J., Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données, La revue canadienne de statistique, 14, 145-159 (1986) · Zbl 0605.62049
[8] Kimberling, C. H., A probabilistic interpretation of complete monotonicity, Aequationes Mathematicae, 10, 152-164 (1974) · Zbl 0309.60012
[9] Marshall, A. W.; Olkin, I., Families of multivariate distributions, Journal of the American Statistical Association, 84, 834-841 (1988) · Zbl 0683.62029
[10] Oakes, D., Bivariate survival models induced by frailties, Journal of the American Statistical Association, 84, 487-493 (1989) · Zbl 0677.62094
[11] Denuit, M.; Dhaene, J.; Goovaerts, M.; Kaas, R., Actuarial Theory for Dependent Risks: Measures, Orders and Models (2005), Wiley: Wiley New York
[12] Frees, E. W.; Valdez, E., Understanding relationships using copulas, North American Actuarial Journal, 2, 1-25 (1998) · Zbl 1081.62564
[13] Cherubini, U.; Luciano, E.; Vecchiato, W., Copula Methods in Finance (2004), Wiley: Wiley New York · Zbl 1163.62081
[14] Embrechts, P.; Lindskog, F.; Mcneil, A., Modelling Dependence with Copulas and Applications to Risk Management (2001), Elsevier/North-Holland: Elsevier/North-Holland Amsterdam
[15] Grimaldi, S.; Serinaldi, F., Asymmetric copula in multivariate flood frequency analysis, Advances in Water Resources, 29, 1155-1167 (2006)
[16] Zhang, L.; Singh, V. P., Bivariate rainfall frequency distributions using Archimedean copulas, Journal of Hydrology, 332, 93-109 (2007)
[17] Bassan, B.; Spizzichino, F., Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes, Journal of Multivariate Analysis, 93, 313-339 (2005) · Zbl 1070.60015
[18] Day, R.; Bryant, J.; Lefkopolou, M., Adaptation of bivariate frailty models for prediction, with application to biological markers as prognostic indicators, Biometrika, 84, 45-56 (1997) · Zbl 0883.62116
[19] Wang, W., Estimating the association parameter for copula models under dependent censoring, Journal of the Royal Statistical Society, Series B, 65, 257-273 (2003) · Zbl 1064.62102
[20] Patton, A., Modelling asymmetric exchange rate dependence, International Economic Review, 47, 527-556 (2006)
[21] A.J. Mcneil, Sampling nested Archimedean copulas, Journal of Statistical Computation and Simulation (2007) (in press); A.J. Mcneil, Sampling nested Archimedean copulas, Journal of Statistical Computation and Simulation (2007) (in press) · Zbl 1221.00061
[22] Ballerini, R., Archimedean copulas, exchangeability and max-stability, Journal of Applied Probability, 31, 383-390 (1994) · Zbl 0812.60022
[23] Capéraà, P.; Fougères, A.-L.; Genest, C., Bivariate distributions with given extreme value attractor, Journal of Multivariate Analysis, 72, 30-49 (2000) · Zbl 0978.62043
[24] Ledford, A. W.; Tawn, J. A., Statistics for near independence in multivariate extreme values, Biometrika, 83, 169-187 (1996) · Zbl 0865.62040
[25] Ledford, A. W.; Tawn, J. A., Modelling dependence withing joint tail regions, Journal of the Royal Statistical Society, Series B, 59, 475-499 (1997) · Zbl 0886.62063
[26] Maulik, K.; Resnick, S., Characterizations and examples of hidden regular variation, Extremes, 7, 31-67 (2004) · Zbl 1088.62066
[27] Resnick, S., Hidden regular variation, second order regular variation and asymptotic independence, Extremes, 5, 303-336 (2002) · Zbl 1035.60053
[28] Juri, A.; Wüthrich, M. V., Copula convergence theorems for tail events, Insurance: Mathematics and Economics, 30, 411-427 (2002) · Zbl 1039.62043
[29] Charpentier, A.; Segers, J., Lower tail dependence for Archimedean copulas, Insurance: Mathematics and Economics, 40, 525-532 (2006) · Zbl 1183.62086
[30] Coles, S. G.; Heffernan, J.; Tawn, J. A., Dependence measures for multivariate extremes, Extremes, 2, 339-365 (1999) · Zbl 0972.62030
[31] Mesfioui, M.; Quessy, J.-F., Dependence structure of conditional Archimedean copulas, Journal of Multivariate Analysis, 99, 372-385 (2008) · Zbl 1133.60010
[32] Albrecher, H.; Asmussen, H.; Kortschak, D., Tail asymptotics for the sum of two heavy-tailed dependent risks, Extremes, 9, 107-130 (2006) · Zbl 1142.60009
[33] Alink, S.; Löwe, M.; Wüthrich, M. V., Diversification of aggregate dependent risks, Insurance: Mathematics and Economics, 35, 77-95 (2004) · Zbl 1052.62105
[34] Alink, S.; Löwe, M.; Wüthrich, M. V., Analysis of the expected shortfall of aggregate dependent risks, ASTIN Bulletin, 35, 25-43 (2005) · Zbl 1101.62092
[35] Barbe, P.; Fougères, A.-L.; Genest, C., On the tail behavior of sums of dependent risks, ASTIN Bulletin, 36, 361-373 (2006) · Zbl 1162.91395
[36] D. Kortschak, H. Albrecher, Asymptotic results for the sum of dependent non-identically distributed random variables, Methodology and Computing in Applied Probability (2008) (in press); D. Kortschak, H. Albrecher, Asymptotic results for the sum of dependent non-identically distributed random variables, Methodology and Computing in Applied Probability (2008) (in press) · Zbl 1171.60348
[37] Wüthrich, M. V., Asymptotic value-at-risk estimates for sums of dependent random variables, ASTIN Bulletin, 33, 75-92 (2003) · Zbl 1098.62570
[38] Genest, C.; Ghoudi, K.; Rivest, L.-P., Discussion of “understanding relationships using copulas” by Edward Frees and Emiliano Valdez, North American Actuarial Journal, January 1998, North American Actuarial Journal, 2, 143-149 (1998)
[39] Clayton, D. G., A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65, 141-151 (1978) · Zbl 0394.92021
[40] Bingham, N. C.; Goldie, C. M.; Teugels, J. L., Regular Variation (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0617.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.