×

An uncertainty principle for quaternion Fourier transform. (English) Zbl 1165.42310

Summary: We review the quaternionic Fourier transform (QFT). Using the properties of the QFT we establish an uncertainty principle for the right-sided QFT. This uncertainty principle prescribes a lower bound on the product of the effective widths of quaternion-valued signals in the spatial and frequency domains. It is shown that only a Gaussian quaternion signal minimizes the uncertainty.

MSC:

42C15 General harmonic expansions, frames
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bracewell, R., The Fourier Transform and its Applications (2000), McGraw-Hill Book Company: McGraw-Hill Book Company New York · Zbl 0149.08301
[2] T. Bülow, Hypercomplex spectral signal representations for the processing and analysis of images, Ph.D. Thesis, Institut für Informatik und Praktische Mathematik, University of Kiel, Germany, 1999; T. Bülow, Hypercomplex spectral signal representations for the processing and analysis of images, Ph.D. Thesis, Institut für Informatik und Praktische Mathematik, University of Kiel, Germany, 1999
[3] M. Felsberg, Low-Level image processing with the structure multivector, Ph.D. Thesis, Institut für Informatik und Praktische Mathematik, University of Kiel, Germany, 2002; M. Felsberg, Low-Level image processing with the structure multivector, Ph.D. Thesis, Institut für Informatik und Praktische Mathematik, University of Kiel, Germany, 2002 · Zbl 0999.68227
[4] T.A. Ell, Quaternion-fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems, in: Proceeding of the 32nd Conference on Decision and Control, San Antonio, Texas, 1993, pp. 1830-1841; T.A. Ell, Quaternion-fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems, in: Proceeding of the 32nd Conference on Decision and Control, San Antonio, Texas, 1993, pp. 1830-1841
[5] Pei, S. C.; Ding, J. J.; Chang, J. H., Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT, IEEE Transactions on Signal Processing, 49, 11, 2783-2797 (2001) · Zbl 1369.65190
[6] Hitzer, E., Quaternion Fourier transform on quaternion fields and generalizations, Advances in Applied Clifford Algebras, 17, 3, 497-517 (2007) · Zbl 1143.42006
[7] Sangwine, S. J.; Ell, T. A., Hypercomplex Fourier transforms of color images, IEEE Transactions on Image Processing, 16, 1, 22-35 (2007) · Zbl 1279.94014
[8] P. Bas, N. Le Bihan, J.M. Chassery, Color image watermarking using quaternion Fourier transform, in: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP, Hong-Kong, 2003, pp. 521-524; P. Bas, N. Le Bihan, J.M. Chassery, Color image watermarking using quaternion Fourier transform, in: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP, Hong-Kong, 2003, pp. 521-524
[9] Bayro-Corrochano, E.; Trujillo, N.; Naranjo, M., Quaternion Fourier descriptors for preprocessing and recognition of spoken words using images of spatiotemporal representations, Journal of Mathematical Imaging and Vision, 28, 2, 179-190 (2007)
[10] Weyl, H., The Theory of Groups and Quantum Mechanics (1950), Dover: Dover New York · Zbl 0041.25401
[11] Chui, C. K., An Introduction to Wavelets (1992), Academic Press: Academic Press New York · Zbl 0925.42016
[12] Granlund, G. H.; Knutsson, H., Signal Processing for Computer Vision (1995), Kluwer: Kluwer Dordrecht
[13] E. Hitzer, B. Mawardi, Clifford Fourier transform on multivector fields and uncertainty principles for dimensions \(n = 2\) (mod 4) and \(n = 3\) (mod 4), Advances in Applied Clifford Algebras, doi:10.1007/s00006-008-0098-3, Online First, 25 May 2008; E. Hitzer, B. Mawardi, Clifford Fourier transform on multivector fields and uncertainty principles for dimensions \(n = 2\) (mod 4) and \(n = 3\) (mod 4), Advances in Applied Clifford Algebras, doi:10.1007/s00006-008-0098-3, Online First, 25 May 2008 · Zbl 1177.15029
[14] Kuipers, J. B., Quaternions and Rotation Sequences (1999), Princeton University Press: Princeton University Press New Jersey · Zbl 1053.70001
[15] Brackx, F.; Delanghe, R.; Sommen, F., (Clifford Analysis. Clifford Analysis, Research Notes in Mathematics, vol. 76 (1982), Pitman Advanced Publishing Program: Pitman Advanced Publishing Program Boston) · Zbl 0529.30001
[16] Mawardi, B.; Hitzer, E., Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra \(C l_{3, 0}\), Advances in Applied Clifford Algebras, 16, 1, 41-61 (2006) · Zbl 1133.42305
[17] Mawardi, B.; Hitzer, E., Clifford algebra \(C l_{3, 0}\)-valued wavelet transformation, Clifford wavelet uncertainty inequality and Clifford Gabor wavelets, International Journal of Wavelet, Multiresolution and Information Processing, 5, 6, 997-1019 (2007) · Zbl 1197.42019
[18] Bülow, T.; Felsberg, M.; Sommer, G., Non-commutative hypercomplex Fourier transforms of multidimensional signals, (Sommer, G., Geometric Computing with Clifford Algebras (2001), Springer: Springer Heidelberg), 187-207, (Chapter 8) · Zbl 1072.94501
[19] Shinde, S.; Gadre, V. M., An uncertainty principle for real signals in the fractional Fourier transform domain, IEEE Transactions on Signal Processing, 49, 11, 2545-2548 (2001) · Zbl 1369.94287
[20] Korn, P., Some uncertainty principle for time-frequency transforms for the Cohen class, IEEE Transactions on Signal Processing, 53, 12, 523-527 (2005) · Zbl 1370.94053
[21] Hitzer, E.; Mawardi, B., Uncertainty principle for the Clifford geometric algebra \(C l_{n, 0}, n = 3(\operatorname{mod} 4)\) based on Clifford Fourier transform, (Qian, T.; Vai, M. I.; Xu, Y., The Springer (SCI) Book Series “Applied and Numerical Harmonic Analysis” (2006)), 45-54
[22] Bayro-Corrochano, E., The theory and use of the quaternion wavelet transform, Journal of Mathematical Imaging and Vision, 24, 1, 19-35 (2006) · Zbl 1478.94010
[23] Brackx, F.; De Schepper, N.; Sommmen, F., The two-dimensional Clifford-Fourier transform, Journal of mathematical Imaging and Vision, 26, 1, 5-18 (2006) · Zbl 1122.42016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.