×

Critical defect size distributions in concrete structures detected by the acoustic emission technique. (English) Zbl 1163.74521

Summary: Extensive research and studies on concrete fracture and failure have shown that concrete should be viewed as a quasi-brittle material having a size-dependent behavior. Numerous experimental techniques have been employed to evaluate fracture processes, and a number of modeling approaches have been developed to predict fracture behavior. A non-destructive method based on the Acoustic Emission (AE) technique has proved to be highly effective, especially to assess and measure the damage phenomena taking place inside a structure subjected to mechanical loading. In this paper, comparing AE frequency-magnitude statistics in solids subjected to damage processes with defect size distributions for disordered materials, critical parameters defining instability conditions for monitored structures are found. In addition, an experimental investigation conducted on concrete and RC structures by means of the AE technique is described. Experimental results confirm the described theories.

MSC:

74J25 Inverse problems for waves in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rossi P, Godart N, Robert JL, Gervais JP, Bruhat D (1994) Investigation of the basic creep by acoustic emission. Mater Struct 27:510–514 · doi:10.1007/BF02473211
[2] Pollock AA (1968) Stress wave emission–a new tool for industry. Ultrasonics 6:88–92 · doi:10.1016/0041-624X(68)90199-6
[3] Richter CF (1958) Elementary seismology. Freeman, New York
[4] Carpinteri A (1986) Mechanical damage and crack growth in concrete: plastic collapse to brittle fracture. Nijhoff, Dordrecht · Zbl 0635.73108
[5] Carpinteri A (1989) Decrease of apparent tensile and bending strength with specimen size: two different explanations based on fracture mechanics. Int J Solids Struct 25:407–429 · doi:10.1016/0020-7683(89)90056-5
[6] Carpinteri A (1994) Scaling laws and renormalization groups for strength and toughness of disordered materials. Int J Solids Struct 31:291–302 · Zbl 0807.73050 · doi:10.1016/0020-7683(94)90107-4
[7] Carpinteri A, Lacidogna G, Niccolini G (2006) Critical behavior in concrete structures and damage localization by acoustic emission. Key Eng Mater 312:305–310 · doi:10.4028/www.scientific.net/KEM.312.305
[8] Carpinteri A, Lacidogna G, Pugno N (2006) Richter’s laws at the lab-scale interpreted by acoustic emission. Mag Concr Res 58:619–625 · doi:10.1680/macr.2006.58.9.619
[9] Ohtsu M, Okamoto T, Yuyama S (1998) Moment tensor analysis of acoustic emission for cracking mechanisms in concrete. ACI Struct J 95:87–95
[10] Uomoto T (1987) Application of acoustic emission to the field of concrete engineering. J Acoust Emiss 6:137–144
[11] Rundle JB, Turcotte DL, Shcherbakov R, Klein W, Sammis C (2003) Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev Geophys 41:1–30 · doi:10.1029/2003RG000135
[12] Sammonds PR, Meredith PG, Murrel SAF, Main IG (1994) Modelling the damage evolution in rock containing porefluid by acoustic emission. In: Proceedings of Eurock’94, Rotterdam
[13] Colombo S, Main IG, Forde MC (2003) Assessing damage of reinforced concrete beam using ”b-value” analysis of acoustic emission signals. J Mater Civ Eng ASCE 15:280–286 · doi:10.1061/(ASCE)0899-1561(2003)15:3(280)
[14] Kapiris PG, Balasis GT, Kopanas JA, Antonopoulos GN, Peratzakis AS, Eftaxias KA (2004) Scaling similarities of multiple fracturing of solid materials. Nonlinear Process Geophys 11:137–151 · doi:10.5194/npg-11-137-2004
[15] Ojala IO, Main IG, Ngwenya BT (2004) Strain rate and temperature dependence of Omori law scaling constants of AE data: implications for earthquake foreshock-aftershock sequences. Geophys Res Lett 31:1–5 · doi:10.1029/2004GL020781
[16] Burridge R, Knopoff L (1964) Body force equivalents for seismic dislocations. Bull Seismol Soc Am 54:1875–1888
[17] Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65:1073–1096
[18] Scholz CH (2005) The scaling of geological faults. In: Proceedings of the 11th international conference on fracture (ICF11), Turin
[19] Pollock AA (1973) Acoustic emission, 2: acoustic emission amplitudes. Non-Destr Test 6:264–269 · doi:10.1016/0029-1021(73)90074-1
[20] Aki K, Richards PG (1980) Quantitative seismology: theory and methods. Freeman, New York
[21] Turcotte DL (1997) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge
[22] Karihaloo BL (1999) Size effect in shallow and deep notched quasi-brittle structures. Int J Fract 95:379–390 · doi:10.1023/A:1018633208621
[23] Barenblatt GI (2005) Scaling phenomena in fatigue and fracture. In: Opening lecture at the 11th international conference on fracture, Turin
[24] Morel S, Schmittbuhl J, Bouchaud E, Valentin G (2000) Scaling of crack surfaces and implications for fracture mechanics. Phys Rev Lett 85:1678–1681 · doi:10.1103/PhysRevLett.85.1678
[25] Weiss J (2001) Self-affinity of fracture surfaces and implications on a possible size effect on fracture energy. Int J Fract 109:365–381 · doi:10.1023/A:1011078531887
[26] Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 348:539–542 · doi:10.1038/nature04094
[27] Harris DO, Tetelman AS, Darwish FA (1972) Detection of fiber cracking by acoustic emission. In: Liptai RG, Harris DO, Tatro CA (eds) Acoustic emission, STP505. American Society for Testing and Materials, Philadelphia
[28] Brindley BJ, Holt J, Palmer IG (1973) Acoustic emission, 3: the use of ring-down counting. Non-Destr Test 6:299–306 · doi:10.1016/0029-1021(73)90129-1
[29] Carpinteri A, Lacidogna G, Pugno N (2007) Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Eng Fract Mech 74:279–289
[30] Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge · Zbl 0743.73002
[31] Krajcinovic D (1996) Damage mechanics. Elsevier, Amsterdam · Zbl 0852.73003
[32] Cox SJD, Meredith PG (1993) Microcrack formation and material softening in rock measured by monitoring acoustic emission. Int J Rock Mech Min Sci Geomech Abstr 30(1):11–21 · doi:10.1016/0148-9062(93)90172-A
[33] Carpinteri A, Lacidogna G, Paggi M (2007) Acoustic emission monitoring and numerical modeling of FRP delamination in RC beams with non-rectangular cross-section. Mater Struct 40:553–566 · doi:10.1617/s11527-006-9162-4
[34] Shcherbakov R, Turcotte DL (2003) Damage and self-similarity in fracture. Theor Appl Fract Mech 39:245–258 · doi:10.1016/S0167-8442(03)00005-3
[35] Turcotte DL, Newman WI, Shcherbakov R (2003) Micro and macroscopic models of rock fracture. Geophys J Int 152:718–728 · doi:10.1046/j.1365-246X.2003.01884.x
[36] Shah SP, Li Z (1994) Localisation of microcracking in concrete under uniaxial tension. ACI Mater J 91:372–381
[37] Ohtsu M (1996) The history and development of acoustic emission in concrete engineering. Mag Concr Res 48:321–330 · doi:10.1680/macr.1996.48.177.321
[38] Kuksenko V, Tomilin N, Chmel A (2005) The role of driving rate in scaling characteristics of rock fracture. J Stat Mech: Theory Exp (electronic journal). doi: 10.1088/1742-5468/2005/06/P06012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.