×

Uniformly exponentially stable approximations for a class of damped systems. (English) Zbl 1163.74019

Summary: We consider time semi-discrete approximations of a class of exponentially stable infinite-dimensional systems modeling, for instance, damped vibrations. It has recently been proved that for time semi-discrete systems, due to high-frequency spurious components, the exponential decay property may be lost as the time step tends to zero. We prove that, adding a suitable numerical viscosity term in the numerical scheme, one obtains approximations that are uniformly exponentially stable. This result is then combined with previous ones on space semi-discretizations to derive similar results on fully-discrete approximation schemes. Our method is mainly based on a decoupling argument of low and high frequencies, the low-frequency observability property for time semi-discrete approximations of conservative linear systems, and on the dissipativity of numerical viscosity for high-frequency components. Our methods also allow to deal directly with stabilization properties of fully discrete approximation schemes without numerical viscosity, under a suitable CFL type condition on time and space discretization parameters.

MSC:

74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Banks, H. T.; Ito, K.; Wang, C., Exponentially stable approximations of weakly damped wave equations, (Estimation and Control of Distributed Parameter Systems. Estimation and Control of Distributed Parameter Systems, Vorau, 1990. Estimation and Control of Distributed Parameter Systems. Estimation and Control of Distributed Parameter Systems, Vorau, 1990, Internat. Ser. Numer. Math., vol. 100 (1991), Birkhäuser: Birkhäuser Basel), 6-33 · Zbl 0850.93719
[2] Bardos, C.; Lebeau, G.; Rauch, J., Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optimization, 30, 5, 1024-1065 (1992) · Zbl 0786.93009
[3] Burq, N.; Gérard, P., Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris Sér. I Math., 325, 7, 749-752 (1997) · Zbl 0906.93008
[4] Burq, N.; Zworski, M., Geometric control in the presence of a black box, J. Amer. Math. Soc., 17, 2, 443-471 (2004), (electronic) · Zbl 1050.35058
[5] Castro, C.; Micu, S., Boundary controllability of a linear semi-discrete 1-d wave equation derived from a mixed finite element method, Numer. Math., 102, 3, 413-462 (2006) · Zbl 1102.93004
[6] Castro, C.; Micu, S.; Münch, A., Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square, IMA J. Numer. Anal., 28, 1, 186-214 (2008) · Zbl 1139.93005
[7] Cox, S.; Zuazua, E., The rate at which energy decays in a damped string, Comm. Partial Differential Equations, 19, 1-2, 213-243 (1994) · Zbl 0818.35072
[8] Cox, S.; Zuazua, E., The rate at which energy decays in a string damped at one end, Indiana Univ. Math. J., 44, 2, 545-573 (1995) · Zbl 0847.35078
[9] Dáger, R.; Zuazua, E., Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, Mathématiques & Applications (Berlin), vol. 50 (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1083.74002
[10] Dehman, B.; Lebeau, G.; Zuazua, E., Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. École Norm. Sup. (4), 36, 4, 525-551 (2003) · Zbl 1036.35033
[11] S. Ervedoza, Observability of the mixed finite element method for the 1d wave equation on non-uniform meshes, ESAIM Control Optim. Calc. Var., in press; S. Ervedoza, Observability of the mixed finite element method for the 1d wave equation on non-uniform meshes, ESAIM Control Optim. Calc. Var., in press · Zbl 1192.35109
[12] Ervedoza, S.; Zheng, C.; Zuazua, E., On the observability of time-discrete conservative linear systems, J. Funct. Anal., 254, 12, 3037-3078 (2008) · Zbl 1143.65044
[13] Ervedoza, S.; Zuazua, E., Perfectly matched layers in 1-d: Energy decay for continuous and semi-discrete waves, Numer. Math., 109, 4, 597-634 (2008) · Zbl 1148.65070
[14] S. Ervedoza, E. Zuazua, Uniform exponential decay for viscous damped systems, 2008, submitted for publication; S. Ervedoza, E. Zuazua, Uniform exponential decay for viscous damped systems, 2008, submitted for publication · Zbl 1201.35046
[15] Glowinski, R., Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation, J. Comput. Phys., 103, 2, 189-221 (1992) · Zbl 0763.76042
[16] Haraux, A., Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal. Math., 46, 3, 245-258 (1989) · Zbl 0679.93063
[17] Ignat, L. I.; Zuazua, E., Dispersive properties of a viscous numerical scheme for the Schrödinger equation, C. R. Math. Acad. Sci. Paris, 340, 7, 529-534 (2005) · Zbl 1063.35016
[18] Infante, J. A.; Zuazua, E., Boundary observability for the space semi discretizations of the 1-d wave equation, Math. Model. Numer. Ann., 33, 407-438 (1999) · Zbl 0947.65101
[19] Lebeau, G., Équations des ondes amorties, Séminaire sur les Équations aux Dérivées Partielles, 1993-1994 (1994), École Polytech.
[20] Lions, J.-L., Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, RMA, vol. 8 (1988), Masson · Zbl 0653.93002
[21] Macià, F., The effect of group velocity in the numerical analysis of control problems for the wave equation, (Mathematical and Numerical Aspects of Wave Propagation—WAVES 2003 (2003), Springer: Springer Berlin), 195-200 · Zbl 1048.93047
[22] Miller, L., Controllability cost of conservative systems: Resolvent condition and transmutation, J. Funct. Anal., 218, 2, 425-444 (2005) · Zbl 1122.93011
[23] Münch, A.; Pazoto, A. F., Uniform stabilization of a viscous numerical approximation for a locally damped wave equation, ESAIM Control Optim. Calc. Var., 13, 2, 265-293 (2007), (electronic) · Zbl 1120.65101
[24] Negreanu, M.; Zuazua, E., Convergence of a multigrid method for the controllability of a 1-d wave equation, C. R. Math. Acad. Sci. Paris, 338, 5, 413-418 (2004) · Zbl 1038.65054
[25] Ramdani, K.; Takahashi, T.; Tucsnak, M., Uniformly exponentially stable approximations for a class of second order evolution equations—application to LQR problems, ESAIM Control Optim. Calc. Var., 13, 3, 503-527 (2007) · Zbl 1126.93050
[26] Tcheugoué Tebou, L. R.; Zuazua, E., Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation, Adv. Comput. Math., 26, 1-3, 337-365 (2007) · Zbl 1119.65086
[27] Tcheugoué Tébou, L. R.; Zuazua, E., Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity, Numer. Math., 95, 3, 563-598 (2003) · Zbl 1033.65080
[28] Zhang, X.; Zheng, C.; Zuazua, E., Time discrete wave equations: Boundary observability and control, Discrete and Continuous Dynamical Systems, 23, 1-2, 571-604 (2009) · Zbl 1158.93011
[29] Zuazua, E., Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, 15, 2, 205-235 (1990) · Zbl 0716.35010
[30] Zuazua, E., Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl. (9), 70, 4, 513-529 (1991) · Zbl 0765.35010
[31] Zuazua, E., Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square, J. Math. Pures Appl. (9), 78, 5, 523-563 (1999) · Zbl 0939.93016
[32] Zuazua, E., Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev., 47, 2, 197-243 (2005), (electronic) · Zbl 1077.65095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.