×

Stability of motion in the Sitnikov 3-body problem. (English) Zbl 1162.70312

Summary: We study the stability of motion in the 3-body Sitnikov problem, with the two equal mass primaries \((m_1 = m_2 = 0.5)\) rotating in the \(x,y\) plane and vary the mass of the third particle, \(0 \leq m_3 < 10^{-3}\), placed initially on the \(z\)-axis. We begin by finding for the restricted problem (with \(m_3 = 0\)) an apparently infinite sequence of stability intervals on the \(z\)-axis, whose width grows and tends to a fixed non-zero value, as we move away from \(z = 0\). We then estimate the extent of “islands” of bounded motion in \(x,y,z\) space about these intervals and show that it also increases as \(|z|\) grows. Turning to the so-called extended Sitnikov problem, where the third particle moves only along the \(z\)-axis, we find that, as \(m_3\) increases, the domain of allowed motion grows significantly and chaotic regions in phase space appear through a series of saddle-node bifurcations. Finally, we concentrate on the general 3-body problem and demonstrate that, for very small masses, \(m_3 \approx 10^{-6}\), the “islands” of bounded motion about the \(z\)-axis stability intervals are larger than the ones for \(m_3 = 0\). Furthermore, as \(m_3\) increases, it is the regions of bounded motion closest to \(z = 0\) that disappear first, while the ones further away “disperse” at larger \(m_3\) values, thus providing further evidence of an increasing stability of the motion away from the plane of the two primaries, as observed in the \(m_3 = 0\) case.

MSC:

70F07 Three-body problems
70K20 Stability for nonlinear problems in mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alekseev, V.M.: Quasirandom dynamical systems I, II, III. Math. USSR Sbornik 5, 73–128; 6, 505–560; 7, 1–43 (1968a, b, 1969a) · Zbl 0198.56903
[2] Alekseev V.M. (1969b). Quasirandom dynamical systems. Mat. Zametki 6(4): 489–498 · Zbl 0198.56903
[3] Alfaro J.M. and Chiralt C. (1993). Invariant rotational curves in Sitnikov’s problem. Celest. Mech. Dyn. Astron. 55: 351–367 · Zbl 0773.70006 · doi:10.1007/BF00692994
[4] Belbruno E., Llibre J. and Olle M. (1994). On the families of the periodic orbits of the Sitnikov problem. Celest. Mech. Dyn. Astron. 50: 99–129 · Zbl 0818.70011
[5] Chesley S.R. (1999). A global analysis of the generalized Sitnikov problem. Celest. Mech. Dyn. Astron. 73: 291–302 · Zbl 1031.70009 · doi:10.1023/A:1008323803308
[6] CorsJ. Libre J. (2004). The global flow of the parabolic restricted three-body problem. Celest. Mech. Dyn. Astron. 90: 13–33 · Zbl 1144.70006 · doi:10.1007/s10569-004-4917-0
[7] Dvorak R. (1993). Numerical results to the Sitnikov problem. Celest. Mech. Dyn. Astron. 56: 71–80 · doi:10.1007/BF00699721
[8] Dvorak R. and Sun Y.S. (1997). The phase space structure of the extended Sitnikov-problem. Celest. Mech. Dyn. Astron. 67: 87–106 · Zbl 0912.70008 · doi:10.1023/A:1008265310911
[9] Hagel J. (1992). A new analytic approach to the Sitnikov problem. Celest. Mech. Dyn. Astron. 53: 267–292 · Zbl 0757.70006 · doi:10.1007/BF00052614
[10] Hagel J. and Lhotka Ch. (2005). A High order perturbation analysis of the Sitnikov problem. Celest. Mech. Dyn. Astron. 93: 201–228 · Zbl 1129.70007 · doi:10.1007/s10569-005-0521-1
[11] Hagel J. and Trenkler T. (1993). A computer aided analysis of the Sitnikov problem. Celest. Mech. Dyn. Astron. 56: 81–98 · Zbl 0780.70005 · doi:10.1007/BF00699722
[12] Liu J. and Sun Y.S. (1990). On the Sitnikov problem. Celest. Mech. Astron. 49: 285–302 · Zbl 0718.70005 · doi:10.1007/BF00049419
[13] Mac Millan W.D. (1913). An integrable case in the restricted problem of three bodies. Astron. J. 27: 11–13 · doi:10.1086/103918
[14] Marchal C. (1990). Three Body problem. Elsevier Science Publishers, Amsterdam, New York and Tokyo · Zbl 0719.70006
[15] Moser, J.: Stable and Random Motions in Dynamical Systems. In: Annals of Mathematics Studies No. 77. Princeton University Press and University of Tokyo Press, Princeton, New Jersey (1973) · Zbl 0271.70009
[16] Pavanini, G.: Sopra una nuova categoria di solutioni periodiche nel problema dei tre corpi. Annali di Mathematica, Serie III, Tomo XIII, 179 (1907) · JFM 37.0738.03
[17] Sitnikov C. (1960). The existence of oscillatory motions in the three-body problem. Dokl. Akad. Nauk USSR 133(2): 303–306 · Zbl 0108.18603
[18] Skokos Ch. (2001). Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A: Math. Gen. 34: 10029–10043 · Zbl 1004.37021 · doi:10.1088/0305-4470/34/47/309
[19] Skokos Ch., Antonopoulos Ch., Bountis T.C. and Vrahatis M.N. (2003). How does the smaller alignment index (SALI) distinguish order from chaos. Prog. Theor. Phys. Supp. 150: 439–443 · doi:10.1143/PTPS.150.439
[20] Skokos Ch., Antonopoulos Ch., Bountis T.C. and Vrahatis M.N. (2004). Detecting order and chaos on Hamiltonian systems by the SALI method. J. Phys. A:Math. Gen. 37: 6269–6284 · doi:10.1088/0305-4470/37/24/006
[21] Soulis, P., Bountis, T., Leftaki, M.: Regular and Chaotic Dynamics in Sitnikov’s Circular 3-Body Problem. In: Proc. of 1st International Conference, From Scientific Computing to Computational Engineering 1st IC-SCCE, Athens, 8–10 (2004)
[22] Wodnar K.: New formulations of the Sitnikov problem. In: Roy A.E. (ed.) Predictability, Stability and Chaos in N-body Dynamical Systems, NATO ASI Series B272, Plenum Press, New York and London (1991)
[23] Wodnar K. (1993). The original Sitnikov article new insights. Celest. Mech. Dyn. Astron. 56: 99–101 · Zbl 0789.70009 · doi:10.1007/BF00699723
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.