×

Local detection of defects from image sequences. (English) Zbl 1156.93398

Summary: Our aim is to discuss three approaches to the detection of defects in continuous production processes, which are based on local methods of processing image sequences. These approaches are motivated by and applicable to images of hot metals or other surfaces, which are uniform at a macroscopic level, when defects are not present. The first of them is based on the estimation of fractal dimensions of image cross-sections. The second and third approaches are compositions of known techniques, which are selected and tuned to our goal. We discuss their advantages and disadvantages, since they provide different information on defects. The results of their testing on 12 industrial images are also summarized.

MSC:

93E10 Estimation and detection in stochastic control theory
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Adler J. R. (1981). The Geometry of Random Fields, Wiley, Chichester. · Zbl 0478.60059
[2] Barnsley M. (1988). Fractals Everywhere, Academic Press, New York, NY. · Zbl 0691.58001
[3] Benassi A., Cohen S., Istas J. (2002). Identification and properties of real harmonizable fractional levy motions, Bernoulli 8(1): 97-115. · Zbl 1005.60052
[4] Benassi A., Cohen S., Istas J. (2003). Local self-similarity and Hausdorff dimension, Comptes Rendus Mathematique 336(3): 267-272. · Zbl 1023.60043 · doi:10.1016/S1631-073X(03)00015-3
[5] Chan G., Hall P. and Poskitt D. S. (1995). Periodogram-based estimators of fractal properties, Annals of Statistics 23 (5): 1684-1711. · Zbl 0843.62090 · doi:10.1214/aos/1176324319
[6] Conci A., Proenca C. B. (1998). A fractal image analysis system for fabric inspection based on a box-counting method. Computer Networks and ISDN Systems 30(20-21): 1887-1895.
[7] Constantine A. G. and Hall P. (1994). Characterizing surface smoothness via estimation of effective fractal dimension, Journal of the Royal Statistical Society: Series B 56 (1): 97-113. · Zbl 0804.62079
[8] Davies E. R. (2005). Machine Vision: Theory, Algorithms, Practicalities, 3rd Edn., Academic Press, San Francisco, CA.
[9] Davies E. R. (2008). A generalised approach to the use of sampling for rapid object location, International Journal of Applied Mathematics of Computer Science 18(1): 7-19.
[10] Davies S. and Hall P. (1999). Fractal analysis of surface roughness by using spatial data, Journal of the Royal Statistical Society: Series B 61 (1): 3-37. · Zbl 0927.62118 · doi:10.1111/1467-9868.00160
[11] Dworkin S. B. and Nye T. J. (2006). Image processing for machine vision measurement of hot formed parts, Journal of Materials Processing Technology 174 (1-3): 1-6. · doi:10.1016/j.jmatprotec.2004.10.019
[12] Falconer K. (1990). Fractal Geometry, Wiley, New York, NY. · Zbl 0689.28003
[13] Gonzalez R. C. and Wintz P. (1977). Digital Image Processing, Addison-Wesley, Reading, MA. · Zbl 0441.68097
[14] Hu M. K. (1962) Visual pattern recognition by moment invariants, IEEE Transactions on Information Theory 6(2): 179-187. · Zbl 0102.13304
[15] Kent J. T. and Wood A. T. (1997), Estimating the fractal dimension of a locally self-similar Gaussian process by using increments, Journal of the Royal Statistical Society: Series B 59 (3): 679-699. · Zbl 0889.62072
[16] Istas J. and Lang G. (1997). Quadratic variations and estimation of the local Hölder index of a Gaussian process, Annales de I’Institut Henri Poincare (B) Probability and Statistics 33 (4): 407-436. · Zbl 0882.60032 · doi:10.1016/S0246-0203(97)80099-4
[17] Jähne B. (2002). Digital Image Processing, Springer-Verlag, Berlin/Heidelberg.
[18] Gill J. Y. and Werman M. (1993). Computing 2-D min, median and max filters, IEEE Transactions on Pattern Analysis and Machine Intelligence 15(5): 504-507. · Zbl 05111419 · doi:10.1109/34.211471
[19] O’Leary P. (2005). Machine vision for feedback control in a steel rolling mill, Computers in Industry 56(8-9): 997-1004.
[20] Malamas E. N., Petrakis E. G. M., Zervakis M., Petit L. and Legat J-D. (2003). A survey on industrial vision systems, applications and tools, Image and Vision Computing 21(2): 171-188. · doi:10.1016/S0262-8856(02)00152-X
[21] Ott E. (1993). Chaos in Dynamical Systems, Cambridge University Press, Cambridge. · Zbl 0792.58014
[22] Pratt P. K. (2001). Digital Image Processing, 3rd Edn., Wiley, New York, NY. · Zbl 0728.68142
[23] Rafajłowicz E. (2008). Testing homogeneity of coefficients in distributed systems with application to quality monitoring, IEEE Transactions on Control Systems Technology 16(2): 314-321. · doi:10.1109/TCST.2007.903398
[24] Rafajłowicz E. (2004) Testing (non-)existence of input-output relationships by estimating fractal dimensions, IEEE Transactions Signal Processing 52(11): 3151-3159. · Zbl 1370.94216 · doi:10.1109/TSP.2004.836454
[25] Rosenfeld A. and Kak A. C. (1982). Digital Picture Processing, Academic Press, Inc., Orlando, FL. · Zbl 0564.94002
[26] Schuster H. G. (1988). Deterministic Chaos, VGH Verlagsgesellschaft, Weinheim. · Zbl 0707.58003
[27] Skubalska-Rafajłowicz E. (2005). A new method of estimation of the box-counting dimension of multivariate objects using space-filling curves, Nonlinear Analysis 63 (5-7): 1281-1287. · Zbl 1221.62088 · doi:10.1016/j.na.2005.02.011
[28] Skubalska-Rafajłowicz E. (2008). Local correlation and entropy maps as tools for detecting defects in industrial images, International Journal of Applied Mathematics and Computer Science 18(1): 41-47.
[29] Tricot C. (1995). Curves and Fractal Dimension, Springer, New York, NY. · Zbl 0783.28004
[30] Tsai D.-M., Lin C.-T., Chen J.-F. (2003). The evaluation of normalized cross correlations for defect detection, Pattern Recognition Letters 24 (15): 2525-2535. · Zbl 1100.68613 · doi:10.1016/S0167-8655(03)00098-9
[31] Wnuk M. (2008). Remarks on hardware implementation of image processing algorithms, International Journal of Applied Mathematics and Computer Science 18(1): 105-110.
[32] Van Herk M. (1992). A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels, Pattern Recognition Letters 13(7): 517-521. · Zbl 05474472 · doi:10.1016/0167-8655(92)90069-C
[33] Vincent L. (1993). Grayscale area openings and closings, their efficient implementation and applications, Proceedings of the EURASIP Workshop on Mathematical Morphology and its Applications to Signal Processing, Barcelona, Spain, pp. 22-27.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.