×

A new SEIR epidemic model with applications to the theory of eradication and control of diseases, and to the calculation of \(R_0\). (English) Zbl 1156.92326

Summary: We present a novel SEIR (susceptible-exposure-infective-recovered) model that is suitable for modeling the eradication of diseases by mass vaccination or control of diseases by case isolation combined with contact tracing, incorporating the vaccine efficacy or the control efficacy into the model. Moreover, relying on this novel SEIR model and some probabilistic arguments, we have found four formulas that are suitable for estimating the basic reproductive number \(R_{0}\) in terms of the ratio of the mean infectious period to the mean latent period of a disease. The ranges of \(R_{0}\) for most known diseases, that are calculated by our formulas, coincide very well with the values of \(R_{0}\) estimated by the usual method of fitting the models to observed data.

MSC:

92D30 Epidemiology
93C95 Application models in control theory
92C60 Medical epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control (1991), Oxford University: Oxford University Oxford
[2] Bauch, C. T.; Lloyd-Smith, J. O.; Coffee, M. P.; Galvani, A. P., Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future, Epidemiology, 16, 6, 791 (2005)
[3] Benenson, A. S., Control of Communicable Diseases Manual (1995), American Public Heath Association: American Public Heath Association New York, IL
[4] J.G. Breman, P. Piot, K.M. Johnson et al., The epidemiology of Ebola; J.G. Breman, P. Piot, K.M. Johnson et al., The epidemiology of Ebola
[5] CDC (http://www.cdc.govhttp://www.cdc.gov/mmwr; CDC (http://www.cdc.govhttp://www.cdc.gov/mmwr
[6] CDC, Epidemiology & Prevention of Vaccine - Preventable Diseases, The Pink Book, ninth ed., CDC, 2006. Available from: <http://www.cdc.gov; CDC, Epidemiology & Prevention of Vaccine - Preventable Diseases, The Pink Book, ninth ed., CDC, 2006. Available from: <http://www.cdc.gov
[7] Chowell, G.; Hengartner, N. W.; Castillo-Chavez, C.; Fenimore, P. W.; Hyman, J. M., The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda, J. Theor. Biol., 229, 119 (2004) · Zbl 1440.92062
[8] Chowell, G.; Castillo-Chavez, C.; Fenimore, P. W.; Kribs-Zaleta, C. M.; Arriola, L.; Hyman, J. M., Model parameters and outbreak control for SARS, Emerg. Infect. Dis., 10, 1258 (2004)
[9] Chowell, G.; Castillo-Chavez, C.; Diaz-Duenas, P., Characterization of an outbreak of acute hemorrhagic conjunctivitis in Mexico, Digital J. Ophthalmol., 11, 1 (2005), Available from: <http://www.djo.harvard.edu/>
[10] Chowell, G.; Rivas, A. L.; Hengartner, N. W.; Hyman, J. M.; Castillo-Chavez, C., The role of spatial mixing in the spread of foot-and-mouth disease, Prev. Vet. Med., 73, 297 (2006)
[11] Chowell, G.; Nishiura, H.; Bettencount, L. M., Comparative estimation of the reproduction number for pandemic influenza from daily case notification data, J. Roy. Soc. Interf., 4, 155 (2007)
[12] G. Chowell, M.A. Miller, C. Viboud, 2007. Seasonal influenza in the United States, France and Australia: transmission and prospects for control, Epidemiol. Infect. 2007 July 18, p. 1 (Epub ahead of print).; G. Chowell, M.A. Miller, C. Viboud, 2007. Seasonal influenza in the United States, France and Australia: transmission and prospects for control, Epidemiol. Infect. 2007 July 18, p. 1 (Epub ahead of print).
[13] Cooper, B.; Pitman, R. J.; Edmunds, W. J.; Gay, N. J., Delaying the international spread of pandemic influenza, PLoS Med., 3, 845 (2006), Available from: <http://www.plosmedicine.org/>
[14] Diekmann, O.; Heeterbeek, J. A.P., Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation (2000), Wiley: Wiley New York · Zbl 0997.92505
[15] Donnelly, C. A., Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong, Lancet, 361, 1761 (2003)
[16] Eichner, M.; Dietz, K., Transmission potential of smallpox: estimates based on detailed data from an outbreak, Am. J. Epidemiol., 158, 110 (2003)
[17] J. Elstrodt, Maßund Integrationstheorie. 4. korrigierte Auflage, Springer, Berlin, 2005.; J. Elstrodt, Maßund Integrationstheorie. 4. korrigierte Auflage, Springer, Berlin, 2005.
[18] Ferguson, N. M.; Donnelly, C. A.; Anderson, R. M., The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions, Science, 292, 1155 (2001)
[19] Ferguson, N. M.; Cummings, D. A.; Fraser, C.; Cajka, J. C.; Cooley, P. C.; Burke, D. S., Strategies for mitigating an influenza pandemic, Nature, 442, 448 (2006)
[20] Flahault, A.; Letrait, S.; Blin, P.; Hazou, S.; Menares, J.; Valleron, J., Modelling the 1985 influenza epidemic in France, Stat. Med., 7, 1147 (1988)
[21] Fracer, C.; Riley, S.; Anderson, R. M.; Ferguson, N. M., What makes an infectious disease outbreak controllable?, Proc. Natl. Acad. Sci. USA, 101, 6146 (2004)
[22] Gani, R.; Hughes, H.; Fleming, D.; Griffin, T.; Medlock, J.; Leach, S., Potential impact of antiviral drug use during influenza pandemic, Emerg. Infect. Dis., 11, 1355 (2005)
[23] Gani, R.; Leach, S., Transmission potential of smallpox in contemporary populations, Nature, 414, 748 (2001)
[24] Halloran, M. E.; Longini, I. M.; Strachiner, C. J., Estimability and interpretation of vaccine efficacy using frailty mixing models, Am. J. Epidemiol., 144, 83 (1996)
[25] Halloran, M. E.; Strachiner, C. J.; Longini, I. M., Study designs for evaluating different efficacy and effectiveness aspects of vaccine, Am. J. Epidemiol., 146, 789 (1997)
[26] Haydon, D. T.; Chase-Topping, M.; Shaw, D. J.; Matthewa, L.; Friar, J. K.; Wilesmith, J.; Woolhouse, M. E.J., The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak, Proc. R. Soc. Lond. A, 270, 124 (2004)
[27] Heffernan, J. M.; Smith, R. J.; Wahl, L. M., Perspectives on the basic reproductive ratio, J. Roy. Soc. Interf., 2, 281 (2005)
[28] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 599 (2000) · Zbl 0993.92033
[29] S.-Z. Huang, Emergency response to a biological terror attack: mass vaccination (MV) or targeted vaccination (TV)? preprint, 2007.; S.-Z. Huang, Emergency response to a biological terror attack: mass vaccination (MV) or targeted vaccination (TV)? preprint, 2007.
[30] S.-Z. Huang, A detailed study of the 2002-2003 SARS epidemic using a new SEIR model, 2007, preprint.; S.-Z. Huang, A detailed study of the 2002-2003 SARS epidemic using a new SEIR model, 2007, preprint.
[31] Kao, R. R., The impact of local heterogeneity on alternative control strategies for foot-and-mouth disease, Proc. R. Soc. Lond. B, 270, 2557 (2003)
[32] Keeling, M. J., Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape, Science, 294, 813 (2001)
[33] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. A, 115, 700 (1927) · JFM 53.0517.01
[34] Khan, A. S.; Tshioko, F. K.; Heymann, D. L., The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995, J. Infect. Dis., 179, 76 (1999)
[35] Leung, G. M., The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients, Ann. Int. Med., 141, 662 (2004)
[36] Lipsitch, M., Transmission dynamics and control of severe acute respiratory syndrome, Science, 300, 1966 (2003)
[37] Little, S. J.; McLean, A. R.; Spina, C. A.; Richman, D. D.; Havlir, D. V., Viral dynamics of acute HIV-1 infection, J. Exp. Med., 190, 841 (1999)
[38] Lloyd, A. L., Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics, Theor. Popul. Biol., 60, 59 (2001)
[39] Lloyd, A. L., Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proc. R. Soc. Lond. B, 268, 985 (2001)
[40] Lloyd-Smith, J. O.; Schreiber, S. J.; Kopp, P. E.; Getz, W. M., Superspreading and the effect of individual variation on disease emergence, Nature, 438, 355 (2005)
[41] Longini, I. M.; Halloran, M. E.; Yang, Y., Containing the pandemic influenza with antiviral agents, Am. J. Epidemiol., 159, 623 (2004)
[42] May, R. M.; Gupta, S.; McLean, A. R., Infectious disease dynamics: what characterizes a successful invader?, Philos. Trans. R. Soc. Lond. B, 356, 901 (2001)
[43] Mills, C. E.; Robins, J. M.; Lipsitch, M., Transmissibility of 1918 pandemic influenza, Nature, 432, 904 (2004)
[44] Massad, E.; Burattini, M. N.; Coutinho, F. A.; Lopez, L. F., The 1918 influenza A epidemic in the city of Sao Paulo, Brazil, Med. Hypotheses, 68, 442 (2007)
[45] Müller, J.; Kretzschmar, M.; Dietz, K., Contact tracing in stochastic and deterministic epidemic models, Math. Biosci., 164, 39 (2000) · Zbl 0965.92027
[46] Nishiura, H., Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918-19, Theor. Biol. Med. Model., 4, 20 (2007)
[47] Nowak, M. A., Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection, J. Virol., 71, 7518 (1997)
[48] Oyok, T., Outbreak of Ebola hemorrhagic fever - Uganda, August 2000-January 2001, MMWR, 50, 5, 73 (2001), Available from: <http://www.cdc.gov/mmwr/>
[49] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582 (1996)
[50] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 3 (1999) · Zbl 1078.92502
[51] Prochorov, Yu. V., Convergence of random processes and limit theorems in probability theory, Theor. Probab. Appl., 1, 157 (1956)
[52] Prüss, J., Evolutionary Integral Equations and Applications (1993), Birkhäuser: Birkhäuser Basel · Zbl 0793.45014
[53] Riley, S., Transmission dynamics of the ethological agent of SARS in Hong Kong: impact of public heath interventions, Science, 300, 1961 (2003)
[54] Sartwell, P. E., The distribution of incubation periods of infectious diseases, Am. J. Hyg., 51, 310 (1950)
[55] Sertsou, G.; Wilson, N.; Baker, M.; Nelson, P.; Roberts, M. G., Key transmission parameters of an institutional outbreak during the 1918 influenza pandemic estimated by mathematical modelling, Theor. Biol. Med. Model., 3, 38 (2006)
[56] Stegeman, A.; Bouma, A.; Elbers, A. R.; de Jong, M. C.; Nodelijk, G.; de Klerk, F.; Koch, G.; van Boven, M., Avian influenza A virus (H7N7) in The Netherlands in 2003: course of the epidemic and effectiveness of control measures, J. Infect. Dis., 190, 2088 (2004)
[57] Wallinga, J.; Teunis, P., Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures, Am. J. Epidemiol., 160, 509 (2004)
[58] Wang, W.-D.; Ruan, S.-G., Simulating the SARS outbreak in Beijing with limited data, J. Theor. Biol., 227, 369 (2004) · Zbl 1439.92185
[59] Wearing, H. J.; Rohani, P.; Keeling, M., Appropriate models for the management of infectious diseases, PLoS Med., 2, 0621 (2005), Availabel from: <http://www.plosmedicine.org/>
[60] Wilson, J. N.; Nokes, D. J.; Carman, W. F., Predictions of the emergence of vaccine-resistant hepatitis B in the Gambia using a mathematical model, Epidemiol. Infect., 124, 295 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.