×

Asymptotically scale invariant occupancy of phase space makes the entropy \(S_q\) extensive. (English) Zbl 1155.82300

Summary: Phase space can be constructed for \(N\) equal and distinguishable subsystems that could be probabilistically either weakly correlated or strongly correlated. If they are locally correlated, we expect the Boltzmann-Gibbs entropy \(S_{\text{BG}} \equiv -k \sum_i p_i \ln p_i\) to be extensive, i.e., \(S_{\text{BG}}(N) \propto N\) for \(N\to\infty\). In particular, if they are independent, \(S_{\text{BG}}\) is strictly additive, i.e., \(S_{\text{BG}}(N) = NS_{\text{BG}}(1)\), \(\forall N\). However, if the subsystems are globally correlated, we expect, for a vast class of systems, the entropy \(S_q \equiv k[1 - \sum_i p^{q_i}]/(q-1)\) (with \(S_1 = S_{\text{BG}}\)) for some special value of \(q \neq 1\) to be the one which is extensive [i.e., \(S_q(N) \propto N\) for \(N\to\infty\)].
Another concept which is relevant is strict or asymptotic scale-freedom (or scale-invariance), defined as the situation for which all marginal probabilities of the \(N\)-system coincide or asymptotically approach (for \(N\to\infty\)) the joint probabilities of the \((N-1)\)-system. If each subsystem is a binary one, scale-freedom is guaranteed by what we hereafter refer to as the Leibniz rule, i.e., the sum of two successive joint probabilities of the \(N\)-system coincides or asymptotically approaches the corresponding joint probability of the \((N-1)\)-system. The kinds of interplay of these various concepts are illustrated in several examples. One of them justifies the title of this paper.
We conjecture that these mechanisms are deeply related to the very frequent emergence, in natural and artificial complex systems, of scale-free structures and to their connections with nonextensive statistical mechanics. Summarizing, we have shown that, for asymptotically scale-invariant systems, it is \(S_q\) with \(q\neq 1\), and not \(S_{\text{BG}}\), the entropy which matches standard, Clausius-like, prescriptions of classical thermodynamics.

MSC:

82B03 Foundations of equilibrium statistical mechanics
60C05 Combinatorial probability
62B10 Statistical aspects of information-theoretic topics
94A17 Measures of information, entropy
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] KYBERNETICA 3 pp 30– (1967)
[2] KYBERNETIKA 4 pp 105– (1968)
[3] INF CONTROL 16 pp 36– (1970) · Zbl 0205.46901 · doi:10.1016/S0019-9958(70)80040-7
[4] Reviews of Modern Physics 50 pp 221– (1978) · doi:10.1103/RevModPhys.50.221
[5] 6 pp 539– (1995) · Zbl 0900.82056 · doi:10.1016/0960-0779(95)80062-L
[6] 13 pp 371– (2002) · Zbl 1012.82003 · doi:10.1016/S0960-0779(01)00019-4
[7] PUBL INST STATIST UNIV PARIS 3 pp 3– (1954)
[8] PROC FOURTH BERKELEY SYMP 1 pp 547– (1961)
[9] PHYS. LETT. A 247 pp 211– (1998) · Zbl 0940.82002 · doi:10.1016/S0375-9601(98)00500-3
[10] PHYSICAL REVIEW LETTERS 83 pp 1711– (1999) · Zbl 1042.82502 · doi:10.1103/PhysRevLett.83.1711
[11] J MATH SCI 10 pp 28– (1975)
[12] PHYS. LETT. A 338 pp 217– (2005) · Zbl 1136.94315 · doi:10.1016/j.physleta.2005.01.094
[13] J STAT PHYS 52 pp 479– (1988) · Zbl 1082.82501 · doi:10.1007/BF01016429
[14] J PHYS A 24 pp L69– (1991) · doi:10.1088/0305-4470/24/2/004
[15] 261 pp 534– (1998) · doi:10.1016/S0378-4371(98)00437-3
[16] PHYSICAL REVIEW LETTERS 80 pp 53– (1998) · doi:10.1103/PhysRevLett.80.53
[17] Borges, Physical Review Letters 89 (25) pp 254103– (2002) · doi:10.1103/PhysRevLett.89.254103
[18] A  a  os, Physical Review Letters 93 (2) pp 020601– (2004) · doi:10.1103/PhysRevLett.93.020601
[19] PHYS REV E 72 pp 0262091– (2005)
[20] Watts, Nature 393 (6684) pp 440– (1998) · Zbl 1368.05139 · doi:10.1038/30918
[21] Reviews of Modern Physics 74 pp 47– (2002) · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[22] MATHEMATICAL DISCOVERY 1 pp 88– (1962)
[23] 222 pp 347– (1995) · doi:10.1016/0378-4371(95)00211-1
[24] PHYS REV E 54 pp R2197– (1996) · doi:10.1103/PhysRevE.54.R2197
[25] REP MATH PHYS 52 pp 437– (2003) · Zbl 1125.82300 · doi:10.1016/S0034-4877(03)80040-X
[26] 340 pp 95– (2004) · doi:10.1016/j.physa.2004.03.082
[27] 340 pp 1– (2004) · doi:10.1016/j.physa.2004.03.072
[28] 356 pp 375– (2005) · doi:10.1016/j.physa.2005.06.065
[29] PRAMANA J PHYS 64 pp 635– (2005) · doi:10.1007/BF02704573
[30] 344 pp 631– (2004) · doi:10.1016/j.physa.2004.06.043
[31] EUROPHYS LETT 70 pp 70– (2005) · doi:10.1209/epl/i2004-10467-y
[32] EUROPHYS LETT 72 pp 197– (2005) · doi:10.1209/epl/i2005-10221-1
[33] J STAT PHYS 27 pp 419– (1982) · doi:10.1007/BF01008947
[34] PHYS REV E 66 pp 0461341– (2002)
[35] PHYS REV E 70 pp 0171021– (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.