×

Applying He’s variational iteration method for solving differential-difference equation. (English) Zbl 1155.65384

Summary: We extend He’s variational iteration method (VIM) to find the approximate solutions for nonlinear differential-difference equation. Simple but typical examples are applied to illustrate the validity and great potential of the generalized variational iteration method in solving nonlinear differential-difference equation. The results reveal that the method is very effective and simple. We find the extended method for nonlinear differential-difference equation is of good accuracy.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R10 Partial functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J.-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons & Fractals, vol. 30, no. 3, pp. 700-708, 2006. · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[2] J.-H. He, “Homotopy perturbation method: a new nonlinear analytical technique,” Applied Mathematics and Computation, vol. 135, no. 1, pp. 73-79, 2003. · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[3] J.-H. He, “The homotopy perturbation method nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287-292, 2004. · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[4] J.-H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons & Fractals, vol. 26, no. 3, pp. 695-700, 2005. · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[5] J.-H. He, “Homotopy perturbation method for bifurcation of nonlinear problems,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 207-208, 2005. · Zbl 1401.65085
[6] J.-H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87-88, 2006. · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[7] T. Özi\cs and A. Yıldırım, “A note on He’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity,” Chaos, Solitons & Fractals, vol. 34, no. 3, pp. 989-991, 2007. · doi:10.1016/j.chaos.2006.04.013
[8] T. Özi\cs and A. Yıldırım, “A comparative study of He’s homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 243-248, 2007. · Zbl 06942269
[9] T. Özi\cs and A. Yıldırım, “Traveling wave solution of Korteweg-de vries equation using He’s homotopy prturbation method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 239-242, 2007. · Zbl 06942268
[10] T. Özi\cs and A. Yıldırım, “Determination of periodic solution for a u1/3 force by He’s modified Lindstedt-Poincaré method,” Journal of Sound and Vibration, vol. 301, no. 1-2, pp. 415-419, 2007. · Zbl 1242.70044 · doi:10.1016/j.jsv.2006.10.001
[11] A. Yıldırım and T. Özi\cs, “Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method,” Physics Letters A, vol. 369, no. 1-2, pp. 70-76, 2007. · Zbl 1209.65120 · doi:10.1016/j.physleta.2007.04.072
[12] J.-H. He, “Variational iteration method-a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699-708, 1999. · Zbl 1342.34005 · doi:10.1016/S0020-7462(98)00048-1
[13] J.-H. He, “Variational iteration method for autonomous ordinary differential systems,” Applied Mathematics and Computation, vol. 114, no. 2-3, pp. 115-123, 2000. · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[14] J.-H. He and X.-H. Wu, “Construction of solitary solution and compacton-like solution by variational iteration method,” Chaos, Solitons & Fractals, vol. 29, no. 1, pp. 108-113, 2006. · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[15] T. Özi\cs and A. Yıldırım, “A study of nonlinear oscillators with u1/3 force by He’s variational iteration method,” Journal of Sound and Vibration, vol. 306, no. 1-2, pp. 372-376, 2007. · Zbl 1242.74214 · doi:10.1016/j.jsv.2007.05.021
[16] M. Dehghan and F. Shakeri, “Application of He’s variational iteration method for solving the Cauchy reaction-diffusion problem,” Journal of Computational and Applied Mathematics, vol. 214, no. 2, pp. 435-446, 2008. · Zbl 1135.65381 · doi:10.1016/j.cam.2007.03.006
[17] F. Shakeri and M. Dehghan, “Solution of delay differential equations via a homotopy perturbation method,” Mathematical and Computer Modelling. In press. · Zbl 1145.34353 · doi:10.1016/j.mcm.2007.09.016
[18] M. Dehghan and F. Shakeri, “Approximate solution of a differential equation arising in astrophysics using the variational iteration method,” New Astronomy, vol. 13, no. 1, pp. 53-59, 2008. · doi:10.1016/j.newast.2007.06.012
[19] F. Shakeri and M. Dehghan, “Numerical solution of a biological population model using He’s variational iteration method,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1197-1209, 2007. · Zbl 1137.92033 · doi:10.1016/j.camwa.2006.12.076
[20] F. Shakeri and M. Dehghan, “Numerical solution of the Klein-Gordon equation via He’s variational iteration method,” Nonlinear Dynamics, vol. 51, no. 1-2, pp. 89-97, 2008. · Zbl 1179.81064 · doi:10.1007/s11071-006-9194-x
[21] M. Tatari and M. Dehghan, “On the convergence of He’s variational iteration method,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 121-128, 2007. · Zbl 1120.65112 · doi:10.1016/j.cam.2006.07.017
[22] M. Tatari and M. Dehghan, “Solution of problems in calculus of variations via He’s variational iteration method,” Physics Letters A, vol. 362, no. 5-6, pp. 401-406, 2007. · Zbl 1197.65112 · doi:10.1016/j.physleta.2006.09.101
[23] M. Dehghan and M. Tatari, “The use of He’s variational iteration method for solving a Fokker-Planck equation,” Physica Scripta, vol. 74, no. 3, pp. 310-316, 2006. · Zbl 1108.82033 · doi:10.1088/0031-8949/74/3/003
[24] M. Dehghan and M. Tatari, “Identifying an unknown function in a parabolic equation with overspecified data via He’s variational iteration method,” Chaos, Solitons & Fractals, vol. 36, no. 1, pp. 157-166, 2008. · Zbl 1152.35390 · doi:10.1016/j.chaos.2006.06.023
[25] M. Tatari and M. Dehghan, “He’s variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation,” Chaos, Solitons & Fractals, vol. 33, no. 2, pp. 671-677, 2007. · Zbl 1131.65084 · doi:10.1016/j.chaos.2006.01.059
[26] D. Baldwin, Ü. Gökta\cs, and W. Hereman, “Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations,” Computer Physics Communications, vol. 162, no. 3, pp. 203-217, 2004. · Zbl 1196.68324 · doi:10.1016/j.cpc.2004.07.002
[27] Z. Wang, L. Zou, and H. Zhang, “Applying homotopy analysis method for solving differential-difference equation,” Physics Letters A, vol. 369, no. 1-2, pp. 77-84, 2007. · Zbl 1209.65119 · doi:10.1016/j.physleta.2007.04.070
[28] C. Dai and J. Zhang, “Jacobian elliptic function method for nonlinear differential-difference equations,” Chaos, Solitons & Fractals, vol. 27, no. 4, pp. 1042-1047, 2006. · Zbl 1091.34538 · doi:10.1016/j.chaos.2005.04.071
[29] M. Sun, S. Deng, and D. Chen, “The Bäcklund transformation and novel solutions for the Toda lattice,” Chaos, Solitons & Fractals, vol. 23, no. 4, pp. 1169-1175, 2005. · Zbl 1080.37074 · doi:10.1016/j.chaos.2004.06.009
[30] R. Hirota, X.-B. Hu, and X.-Y. Tang, “A vector potential KdV equation and vector Ito equation: soliton solutions, bilinear Bäcklund transformations and Lax pairs,” Journal of Mathematical Analysis and Applications, vol. 288, no. 1, pp. 326-348, 2003. · Zbl 1055.35100 · doi:10.1016/j.jmaa.2003.08.046
[31] X.-B. Hu and Y.-T. Wu, “Application of the Hirota bilinear formalism to a new integrable differential-difference equation,” Physics Letters A, vol. 246, no. 6, pp. 523-529, 1998.
[32] X.-B. Hu and H.-W. Tam, “Application of Hirota’s bilinear formalism to a two-dimensional lattice by Leznov,” Physics Letters A, vol. 276, no. 1-4, pp. 65-72, 2000. · Zbl 1119.37332 · doi:10.1016/S0375-9601(00)00650-2
[33] M. Mañas, A. Doliwa, and P. M. Santini, “Darboux transformations for multidimensional quadrilateral lattices. I,” Physics Letters A, vol. 232, no. 1-2, pp. 99-105, 1997. · Zbl 1006.37501 · doi:10.1016/S0375-9601(97)00341-1
[34] L. Wu, L. D. Xie, and J. F. Zhang, “Adomian decomposition method for nonlinear differential-difference equations,” Communications in Nonlinear Science and Numerical Simulation. In press. · Zbl 1221.65209 · doi:10.1016/j.cnsns.2007.01.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.