×

Comparative vibration analysis of a parametrically nonlinear excited oscillator using HPM and numerical method. (English) Zbl 1152.70012

Summary: We present an analytical investigation of the vibrations of a parametrically excited oscillator with strong cubic negative nonlinearity based on Mathieu-Duffing equation. The analytic investigation is conducted by using He’s homotopy-perturbation method (HPM). The Runge-Kutta algorithm is used to solve the governing equation numerically. To demonstrate the validity of the proposed method, the approximate analytical solution is compared with numerical solution. Afterward, the effects of variation of parameters on the accuracy of homotopy-perturbation method are studied.

MSC:

70K28 Parametric resonances for nonlinear problems in mechanics
70K60 General perturbation schemes for nonlinear problems in mechanics
70-08 Computational methods for problems pertaining to mechanics of particles and systems
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] M. Mond, G. Cederbaum, P. B. Khan, and Y. Zarmi, “Stability analysis of the nonlinear Mathieu equation,” Journal of Sound and Vibration, vol. 167, no. 1, pp. 77-89, 1993. · Zbl 0925.34068 · doi:10.1006/jsvi.1993.1322
[2] E. Esmailzadeh, G. Nakhaie-Jazar, and B. Mehri, “Existence of periodic solution for beams with harmonically variable length,” Journal of Vibration and Acoustics, vol. 119, no. 3, pp. 485-488, 1997. · doi:10.1115/1.2889749
[3] E. Esmailzadeh and N. Jalili, “Parametric response of cantilever Timoshenko beams with tip mass under harmonic support motion,” International Journal of Non-Linear Mechanics, vol. 33, no. 5, pp. 765-781, 1998. · Zbl 1131.74317 · doi:10.1016/S0020-7462(97)00049-8
[4] E. Esmailzadeh and A. Goodarzi, “Stability analysis of a CALM floating offshore structure,” International Journal of Non-Linear Mechanics, vol. 36, no. 6, pp. 917-926, 2001. · Zbl 1345.74048 · doi:10.1016/S0020-7462(00)00055-X
[5] Y. O. El-Dib, “Nonlinear Mathieu equation and coupled resonance mechanism,” Chaos, Solitons & Fractals, vol. 12, no. 4, pp. 705-720, 2001. · Zbl 1048.70010 · doi:10.1016/S0960-0779(00)00011-4
[6] L. Ng and R. Rand, “Bifurcations in a Mathieu equation with cubic nonlinearities,” Chaos, Solitons & Fractals, vol. 14, no. 2, pp. 173-181, 2002. · Zbl 1029.70009 · doi:10.1016/S0960-0779(01)00226-0
[7] L. Ng and R. Rand, “Bifurcations in a Mathieu equation with cubic nonlinearities-part II,” Communications in Nonlinear Science and Numerical Simulation, vol. 7, no. 3, pp. 107-121, 2002. · Zbl 1043.34040 · doi:10.1016/S1007-5704(02)00018-7
[8] J. F. Rhoads, S. W. Shaw, K. L. Turner, J. Moehlis, B. E. DeMartini, and W. Zhang, “Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators,” Journal of Sound and Vibration, vol. 296, no. 4-5, pp. 797-829, 2006. · doi:10.1016/j.jsv.2006.03.009
[9] V. N. Belovodsky, S. L. Tsyfansky, and V. I. Beresnevich, “The dynamics of a vibromachine with parametric excitation,” Journal of Sound and Vibration, vol. 254, no. 5, pp. 897-910, 2002. · doi:10.1006/jsvi.2001.4134
[10] G. T. Abraham and A. Chatterjee, “Approximate asymptotics for a nonlinear Mathieu equation using harmonic balance based averaging,” Nonlinear Dynamics, vol. 31, no. 4, pp. 347-365, 2003. · Zbl 0287.34062
[11] M. Wiegand, S. Scheithauer, and S. Theil, “Step proof mass dynamics,” Acta Astronautica, vol. 54, no. 9, pp. 631-638, 2004. · doi:10.1016/j.actaastro.2003.06.004
[12] W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sensors and Actuators A, vol. 102, no. 1-2, pp. 139-150, 2002. · doi:10.1016/S0924-4247(02)00299-6
[13] D. Younesian, E. Esmailzadeh, and R. Sedaghati, “Existence of periodic solutions for the generalized form of Mathieu equation,” Nonlinear Dynamics, vol. 39, no. 4, pp. 335-348, 2005. · Zbl 1097.70017 · doi:10.1007/s11071-005-4338-y
[14] L. Cveticanin, “Vibrations in a parametrically excited system,” Journal of Sound and Vibration, vol. 229, no. 2, pp. 245-271, 2000. · doi:10.1006/jsvi.1999.2488
[15] G. N. Jazar, “Stability chart of parametric vibrating systems using energy-rate method,” International Journal of Non-Linear Mechanics, vol. 39, no. 8, pp. 1319-1331, 2004. · Zbl 1348.74150 · doi:10.1016/j.ijnonlinmec.2003.08.009
[16] L. Cveticanin and I. Kovacic, “Parametrically excited vibrations of an oscillator with strong cubic negative nonlinearity,” Journal of Sound and Vibration, vol. 304, no. 1-2, pp. 201-212, 2007. · doi:10.1016/j.jsv.2007.02.028
[17] R. Bellman, Perturbation Techniques in Mathematics, Physics and Engineering, Holt, Rinehart and Winston, New York, NY, USA, 1964. · Zbl 0287.34062
[18] J. D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell, Waltham, Mass, USA, 1968. · Zbl 0287.34062
[19] R. E. O/Malley, Jr., Introduction to Singular Perturbations, Applied Mathematics and Mechanics, Academic Press, New York, NY, USA, 1974. · Zbl 0287.34062
[20] J.-H. He, “Variational iteration method: a kind of nonlinear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699-708, 1999. · Zbl 1342.34005 · doi:10.1016/S0020-7462(98)00048-1
[21] J.-H. He, “Variational iteration method-some recent results and new interpretations,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 3-17, 2007. · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[22] J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262, 1999. · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[23] J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for nonlinear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000. · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[24] J.-H. He, “Homotopy perturbation method: a new nonlinear analytical technique,” Applied Mathematics and Computation, vol. 135, no. 1, pp. 73-79, 2003. · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[25] I. Khatami, N. Tolou, J. Mahmoudi, and M. Rezvani, “Application of homotopy analysis method and variational iteration method for shock wave equation,” Journal of Applied Sciences, vol. 8, no. 5, pp. 848-853, 2008. · Zbl 0287.34062
[26] M. Rafei, D. D. Ganji, H. Daniali, and H. Pashaei, “The variational iteration method for nonlinear oscillators with discontinuities,” Journal of Sound and Vibration, vol. 305, no. 4-5, pp. 614-620, 2007. · Zbl 1242.65154 · doi:10.1016/j.jsv.2007.04.020
[27] N. Tolou, D. D. Ganji, M. J. Hosseini, and Z. Z. Ganji, “Application of homotopy perturbation method in nonlinear heat diffusion-convection-reaction equations,” The Open Mechanics Journal, vol. 1, no. 1, pp. 20-25, 2007. · doi:10.2174/1874158400701010020
[28] N. Tolou, I. Khatami, B. Jafari, and D. D. Ganji, “Analytical solution of nonlinear vibrating systems,” American Journal of Applied Sciences, vol. 5, no. 9, pp. 1219-1224, 2008. · Zbl 0287.34062
[29] D. D. Ganji, M. Nourollahi, and E. Mohseni, “Application of He/s methods to nonlinear chemistry problems,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1122-1132, 2007. · Zbl 1267.65100 · doi:10.1016/j.camwa.2006.12.078
[30] D. D. Ganji and M. Rafei, “Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method,” Physics Letters A, vol. 356, no. 2, pp. 131-137, 2006. · Zbl 1160.35517 · doi:10.1016/j.physleta.2006.03.039
[31] A. Sadighi and D. D. Ganji, “Exact solutions of Laplace equation by homotopy-perturbation and Adomian decomposition methods,” Physics Letters A, vol. 367, no. 1-2, pp. 83-87, 2007. · Zbl 1209.65136 · doi:10.1016/j.physleta.2007.02.082
[32] F. Shakeri and M. Dehghan, “Inverse problem of diffusion equation by He/s homotopy perturbation method,” Physica Scripta, vol. 75, no. 4, pp. 551-556, 2007. · Zbl 1110.35354 · doi:10.1088/0031-8949/75/4/031
[33] M. Dehghan and F. Shakeri, “Solution of an integro-differential equation arising in oscillating magnetic fields using He/s homotopy perturbation method,” Progress in Electromagnetics Research, vol. 78, pp. 361-376, 2008. · doi:10.2528/PIER07090403
[34] F. Shakeri and M. Dehghan, “Solution of delay differential equations via a homotopy perturbation method,” Mathematical and Computer Modelling, vol. 48, no. 3-4, pp. 486-498, 2008. · Zbl 1145.34353 · doi:10.1016/j.mcm.2007.09.016
[35] A. Beléndez, C. Pascual, A. Márquez, and D. I. Méndez, “Application of He/s homotopy perturbation method to the relativistic (An)harmonic oscillator-I: comparison between approximate and exact frequencies,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 4, pp. 483-492, 2007. · Zbl 0287.34062
[36] A. Beléndez, C. Pascual, D. I. Méndez, M. L. Álvarez, and C. Neipp, “Application of He/s homotopy perturbation method to the relativistic (An)harmonic oscillator-II: a more accurate approximate solution,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 4, pp. 493-504, 2007. · Zbl 0287.34062
[37] A. Beléndez, A. Hernández, T. Beléndez, E. Fernández, M. L. Álvarez, and C. Neipp, “Application of He/s homotopy perturbation method to the Duffing-harmonic oscillator,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 1, pp. 79-88, 2007. · Zbl 0287.34062
[38] M. El-Shahed, “Application of differential transform method to nonlinear oscillatory systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 8, pp. 1714-1720, 2008. · doi:10.1016/j.cnsns.2007.03.005
[39] M. L. James, G. M. Smith, and J. C. Wolford, Applied Numerical Methods for Digital Computation, Harper & Row, New York, NY, USA, 1985. · Zbl 0287.34062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.