×

Global existence and uniqueness of Schrödinger maps in dimensions \(d\geq 4\). (English) Zbl 1152.35049

For \(\sigma\geq 0\) and \(n\in \{1,2,\dots \}\) let \(H^\sigma=H^\sigma({\mathbb R}^d, {\mathbb C}^n)\) denote the Banach space of \({\mathbb C}^n\)-valued Sobolev functions on \({\mathbb R}^d\). For \(\sigma\geq 0\) and \(Q=(Q_1,Q_2,Q_3)\in {\mathbb S}^2\) define complete metric space \(H_Q^\sigma = H_Q^\sigma({\mathbb R}^d;{\mathbb S}^2\hookrightarrow {\mathbb R}^3) = \{f:{\mathbb R}^d\to{\mathbb R}^3; | f(x)| \equiv 1, f-Q\in H^\sigma \}\) with induced distance \(d_Q^\sigma(f,g) =\| f-g\| _{H^\sigma}\), and \(H^\infty_Q=\bigcap_{\sigma\in{\mathbb Z}_+} H_Q^\sigma\). Let \(s:{\mathbb R}^d\times{\mathbb R}\to {\mathbb S}^2\hookrightarrow {\mathbb R}^3\) is a continuous function. The authors consider the Schrödinger map initial-value problem \[ \begin{cases} \partial s = s\times \Delta_x s,\quad \text{ on}\quad {\mathbb R}^d \times {\mathbb R} \cr s(0)=s_0.\end{cases} \]
It is proved that in dimensions \(d\geq 4\) this problem admits a unique global (in time) solution \(s\in C({\mathbb R}:H_Q^\infty)\), provided that \(s_0\in H_Q^\infty\) and \(\| s_0-Q\| _{H^{d/2}}\ll 1\), where \(Q\in {\mathbb S}^2\).

MSC:

35K55 Nonlinear parabolic equations
35K15 Initial value problems for second-order parabolic equations
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47H99 Nonlinear operators and their properties
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] I. Bejenaru, On Schrödinger maps, preprint, 2006; I. Bejenaru, On Schrödinger maps, preprint, 2006
[2] I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations, Part 2, Trans. Amer. Math. Soc., in press; I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations, Part 2, Trans. Amer. Math. Soc., in press
[3] Chang, N.-H.; Shatah, J.; Uhlenbeck, K., Schrödinger maps, Comm. Pure Appl. Math., 53, 590-602 (2000) · Zbl 1028.35134
[4] Christodoulou, D.; Tahvildar-Zadeh, A., On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math., 46, 1041-1091 (1993) · Zbl 0744.58071
[5] Ding, W. Y.; Wang, Y. D., Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A, 44, 1446-1464 (2001) · Zbl 1019.53032
[6] Ionescu, A. D.; Kenig, C. E., Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc., 20, 753-798 (2007) · Zbl 1123.35055
[7] Ionescu, A. D.; Kenig, C. E., Low-regularity Schrödinger maps, II: Global well-posedness in dimensions \(d \geqslant 3\), Comm. Math. Phys., 271, 523-559 (2007) · Zbl 1137.35068
[8] Ionescu, A. D.; Kenig, C. E., Low-regularity Schrödinger maps, Differential Integral Equations, 19, 1271-1300 (2006) · Zbl 1212.35449
[9] Kato, J., Existence and uniqueness of the solution to the modified Schrödinger map, Math. Res. Lett., 12, 171-186 (2005) · Zbl 1082.35140
[10] J. Kato, H. Koch, Uniqueness of the modified Schrödinger map in \(H^{3 / 4 + \operatorname{\epsilon}}(\mathbb{R}^2)\); J. Kato, H. Koch, Uniqueness of the modified Schrödinger map in \(H^{3 / 4 + \operatorname{\epsilon}}(\mathbb{R}^2)\)
[11] Kenig, C. E.; Nahmod, A., The Cauchy problem for the hyperbolic-elliptic Ishimori system and Schrödinger maps, Nonlinearity, 18, 1987-2009 (2005) · Zbl 1213.35358
[12] Kenig, C. E.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46, 527-620 (1993) · Zbl 0808.35128
[13] Klainerman, S.; Machedon, M., Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math., 46, 1221-1268 (1993) · Zbl 0803.35095
[14] Klainerman, S.; Rodnianski, I., On the global regularity of wave maps in the critical Sobolev norm, Int. Math. Res. Not., 13, 655-677 (2001) · Zbl 0985.58009
[15] Klainerman, S.; Selberg, S., Remark on the optimal regularity for equations of wave maps type, Comm. Partial Differential Equations, 22, 901-918 (1997) · Zbl 0884.35102
[16] McGahagan, H., An approximation scheme for Schrödinger maps, Comm. Partial Differential Equations, 32, 375-400 (2007) · Zbl 1122.35138
[17] A. Nahmod, J. Shatah, L. Vega, C. Zeng, Schrödinger maps into Hermitian symmetric spaces and their associated frame systems, preprint, 2007; A. Nahmod, J. Shatah, L. Vega, C. Zeng, Schrödinger maps into Hermitian symmetric spaces and their associated frame systems, preprint, 2007
[18] Nahmod, A.; Stefanov, A.; Uhlenbeck, K., On the well-posedness of the wave map problem in high dimensions, Comm. Anal. Geom., 11, 49-83 (2003) · Zbl 1085.58022
[19] Nahmod, A.; Stefanov, A.; Uhlenbeck, K., On Schrödinger maps, Comm. Pure Appl. Math., 56, 114-151 (2003) · Zbl 1028.58018
[20] Nahmod, A.; Stefanov, A.; Uhlenbeck, K., Erratum: “On Schrödinger maps” [Comm. Pure Appl. Math. 56 (2003) 114-151], Comm. Pure Appl. Math., 57, 833-839 (2004)
[21] Shatah, J.; Struwe, M., The Cauchy problem for wave maps, Int. Math. Res. Not., 11, 555-571 (2002) · Zbl 1024.58014
[22] Sulem, P. L.; Sulem, C.; Bardos, C., On the continuous limit for a system of classical spins, Comm. Math. Phys., 107, 431-454 (1986) · Zbl 0614.35087
[23] Tao, T., Global regularity of wave maps. I. Small critical Sobolev norm in high dimension, Int. Math. Res. Not., 6, 299-328 (2001) · Zbl 0983.35080
[24] Tao, T., Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys., 224, 443-544 (2001) · Zbl 1020.35046
[25] Tataru, D., Local and global results for wave maps. I, Comm. Partial Differential Equations, 23, 1781-1793 (1998) · Zbl 0914.35083
[26] Tataru, D., On global existence and scattering for the wave maps equation, Amer. J. Math., 123, 37-77 (2001) · Zbl 0979.35100
[27] Tataru, D., Rough solutions for the wave maps equation, Amer. J. Math., 127, 293-377 (2005) · Zbl 1330.58021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.