×

Boundary vortices in thin magnetic films. (English) Zbl 1151.35006

Consider the functional \[ E_{\varepsilon}(u) = \frac{1}{2}{\int}_\Omega {| \nabla u| }^2 + \frac{1}{2\varepsilon}{\int}_{\partial \Omega}{\sin}^2(u-g)\,d{\mathcal{H}}^1, \] where \(\Omega\) is a simply connected domain in \({\mathbb{R}}^2\), and \(g: \partial \Omega \rightarrow \mathbb{R}\) is a function such that \(e^{ig}: \partial \Omega \rightarrow S^1\) is a map of degree \(\neq 0\). The author studies the behavior of \(E_{\varepsilon}(u)\), as \(\varepsilon\) tends to zero, thus describing the formation of boundary vortices in thin magnetic films.
Convergence results are obtained for sequences of minimizers and stationary points of not too high energy. The limit functions are harmonic ones with boundary singularities. For some cases, in particular for minimizers, an asymptotic expansion for the energy is given, showing that the singular part of the energy depends only on the number of singularities, while their interaction energy is described by a renormalized energy occurring as the first nonsingular term of the expansion (like in the case of the Ginzburg-Landau energy; see the book by F. Bethuel, H. Brézis and F. Hélein [Ginzburg-Landau vortices. Boston, MA: Birkhäuser (1994; Zbl 0802.35142)]).

MSC:

35B25 Singular perturbations in context of PDEs
82D40 Statistical mechanics of magnetic materials

Citations:

Zbl 0802.35142
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser Boston Inc., Boston, MA (1994) · Zbl 0802.35142
[2] Cabré, X., Cónsul, N.: Minimizers for boundary reactions: renormalized energy, location of singularities, and applications, in preparation
[3] Cabré, X., Solà-Morales, J.: Layer solutions in a halfspace for boundary reactions. Comm. Pure Appl. Math. 58, 1678–1732 (2005) · Zbl 1102.35034 · doi:10.1002/cpa.20093
[4] DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Recent analytical developments in micromagnetics, Preprint 80, Max Planck Institute for Mathematics in the Sciences (2004) · Zbl 1151.35426
[5] Gioia, G., James, R.D.: Micromagnetics of very thin films. Proc. Roy. Soc. Lond. A 453, 213–223 (1997) · doi:10.1098/rspa.1997.0013
[6] Kohn, R.V., Slastikov, V.V.: Another thin-film limit of micromagnetics. Arch. Rat. Mech. Anal. 178(2), 227–245 (2005) · Zbl 1074.78012 · doi:10.1007/s00205-005-0372-7
[7] Kurzke, M.: A nonlocal singular perturbation problem with periodic well potential. Preprint 106, Max Planck Institute for Mathematics in the Sciences (2003). To appear in ESAIM: COCV. · Zbl 1107.49016
[8] Kurzke, M.: Analysis of boundary vortices in thin magnetic films. Ph.D. thesis, Universität Leipzig (2004) · Zbl 1151.35006
[9] Lewy, H.; A note on harmonic functions and a hydrodynamical application. Proc. Amer. Math. Soc. 3, 111–113 (1952) · Zbl 0046.41706
[10] Moser, R.: Boundary vortices for thin ferromagnetic films. Arch. Rat. Mech. Anal. 174, 267–300. · Zbl 1099.82025
[11] Moser, R.: Ginzburg-Landau vortices for thin ferromagnetic films. Applied Mathematics Research eXpress 2003(1), 1–32 (2003) · Zbl 1057.35070 · doi:10.1155/S1687120003010104
[12] Rivière, T.: Asymptotic analysis for the Ginzburg-Landau equations. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2(3), 537–575 (1999) · Zbl 0939.35199
[13] Struwe, M.: On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions. Differential Integral Equations 7(5–6), 1613–1624 (1994) · Zbl 0809.35031
[14] Struwe, M.: Erratum: On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions. Differential Integral Equations 8(1), 224 (1995) · Zbl 0817.35029
[15] Toland, J.F.: The Peierls-Nabarro and Benjamin-Ono equations. J. Funct. Anal. 145(1), 136–150 (1997) · Zbl 0876.35106 · doi:10.1006/jfan.1996.3016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.