×

An underwater shock simulator. (English) Zbl 1149.76637

Summary: An underwater shock simulator has been developed for the underwater shock loading of materials and test structures within the laboratory. The tube is struck at one end by a steel projectile, with the test structure placed at the opposite end of the tube. Realistic exponentially decaying pressure pulses are generated in the water with peak pressures in the range 15-70MPa and decay times ranging from 0.1 to 1.5ms. The peak pressure and the pulse duration are independently adjusted by varying the projectile velocity and mass, respectively. The underwater shock simulator is used to investigate the one-dimensional fluid-structure interaction of sandwich plates with steel face sheets and an aluminium foam core. The degree of core compression is measured as a function of both the underwater shock impulse and the Taylor fluid-structure interaction parameter. Fully coupled finite element simulations agree well with the measurements while decoupling the fluid-structure interaction phase from the core compression phase within the finite element analysis leads to an under-prediction of the degree of core compression.

MSC:

76L05 Shock waves and blast waves in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bleich, H.H. & Sandler, I.S. 1970 Interaction between structures and bilinear fluids. <i>Int. J. Solids Struct.</i>&nbsp;<b>6</b>, 617–639, (doi:10.1016/0020-7683(70)90034-X). · Zbl 0195.27202
[2] Dannemann, K.A. & Lankford, J. 2000 High strain rate compression of closed-cell aluminium foams. <i>Mater. Sci. Eng. A</i>&nbsp;<b>293</b>, 157–164, (doi:10.1016/S0921-5093(00)01219-3).
[3] Deshpande, V.S. & Fleck, N.A. 2005 One-dimensional shock response of sandwich beams. <i>J. Mech. Phys. Solids.</i>&nbsp;<b>53</b>, 2347.
[4] Dharmasena, K. P. Queheillalt, D. T. Wadley, H. N. G. Dudt, P. Chen, Y. & Knight, D. In preparation. Dynamic compressive response under blast loading in water of periodic cellular structures.
[5] Fleck, N.A. & Deshpande, V.S. 2004 The resistance of clamped sandwich beams to shock loading. <i>J. Appl. Mech.</i>&nbsp;<b>71</b>, 386. (doi:10.1115/1.1629109). · Zbl 1111.74404
[6] Florence, A.L. 1966 Circular plate under a uniformly distributed impulse. <i>Int. J. Solids Struct.</i>&nbsp;<b>2</b>, 37–47, (doi:10.1016/0020-7683(66)90005-9).
[7] Gerard, G. 1956 A new experimental technique for applying impulsive loads, <i>Proc. Symp. on Impact Testing</i>, number 176 in <i>ASTM Special Technical Publication</i>, Atlantic City, NY, pp. 94–109.
[8] Hutchinson, J.W. & Xue, Z. 2005 Metal sandwich plate optimized for pressure impulses. <i>Int. J. Mech. Sci.</i>&nbsp;<b>47</b>, 545–569, (doi:10.1016/j.ijmecsci.2004.10.012). · Zbl 1192.74294
[9] Krieg, R.O. & Key, S.W. 1973 Transient shell response by numerical time integration. <i>Int. J. Numer. Meth. Eng.</i>&nbsp;<b>7</b>, 273–286, (doi:10.1002/nme.1620070305).
[10] Xu, X.P. & Needleman, A. 1994 Numerical simulations of dynamic crack-growth along an interface. <i>J. Mech. Phys. Solids</i>&nbsp;<b>42</b>, 1397–1434, (doi:10.1016/0022-5096(94)90003-5).
[11] Xue, Z. & Hutchinson, J.W. 2004 A comparative study of blast-resistant metal sandwich plates. <i>Int. J. Impact Eng.</i>&nbsp;<b>30</b>, 1283–1305, (doi:10.1016/j.ijimpeng.2003.08.007).
[12] Menkes, S.B. & Opat, H.J. 1973 Broken beams. <i>Exp. Mech.</i>&nbsp;<b>13</b>, 480–486.
[13] Miyoshi, T., Mukai, T. & Higashi, K. 2002 Energy absorption in closed-cell Al–Zn–Mg–Ca–Ti foam. <i>Mater. Trans.</i>&nbsp;<b>43</b>, 1778–1781, (doi:10.2320/matertrans.43.1778).
[14] Nurick, G.N. & Martin, J.B. 1989 Deformation of thin plates subjected to impulsive loading–a review. Part 2: experimental studies. <i>Int. J. Impact Eng.</i>&nbsp;<b>8</b>, 170–186.
[15] Nurick, G.N. & Martin, J.B. 1989 Deformation of thin plates subjected to impulsive loading–a review. Part 2: theoretical considerations. <i>Int. J. Impact Eng.</i>&nbsp;<b>8</b>, 159–170, (doi:10.1016/0734-743X(89)90014-6).
[16] Olsona, M.D., Nurick, G.N. & Fagnana, J.R. 1993 Deformation and rupture of blast loaded square plates: predictions and experiments. <i>Int. J. Impact Eng.</i>&nbsp;<b>13</b>, 279–291, (doi:10.1016/0734-743X(93)90097-Q).
[17] Rabczuk, T., Kim, J.Y., Samaniego, E. & Belytschko, T. 2004 Homogenization of sandwich structures. <i>Int. J. Numer. Meth. Eng.</i>&nbsp;<b>61</b>, 1009–1027, (doi:10.1002/nme.1100). · Zbl 1075.74616
[18] Radford, D.D., Deshpande, V.S. & Fleck, N.A. 2005 The use of metal foam projectiles to simulate shock loading on a structure. <i>Int. J. Impact Eng.</i>&nbsp;<b>31</b>, 1152–1171, (doi:10.1016/j.ijimpeng.2004.07.012).
[19] Ramajeyathilagam, K. & Vendhan, C.P. 2004 Deformation and rupture of thin rectangular plates subjected to underwater shock. <i>Int. J. Impact Eng.</i>&nbsp;<b>30</b>, 699–719, (doi:10.1016/j.ijimpeng.2003.01.001).
[20] Ramajeyathilagam, K., Vendhan, C.P. & Rao, V.B. 2000 Non-linear transient dynamic response of rectangular plates under shock loading. <i>Int. J. Impact Eng.</i>&nbsp;<b>24</b>, 999–1015, (doi:10.1016/S0734-743X(00)00018-X).
[21] Stoffel, M., Schmidt, R. & Weichert, D. 2001 Shock wave-loaded plates. <i>Int. J. Solids Struct.</i>&nbsp;<b>38</b>, 7659–7680, (doi:10.1016/S0020-7683(01)00038-5). · Zbl 1054.74696
[22] Swisdak, M. M. 1978 Explosion effects and properties: part II–explosion effects in water. Technical report, Naval surface weapons centre, Dahlgren, Virginia, USA.
[23] Taylor, G.I. 1941 The pressure and impulse of submarine explosion waves on plates. <i>The scientific papers of G I Taylor, vol. III</i> pp. 287–303, Cambridge: Cambridge University Press, 1963
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.