×

\(q\)-Taylor and interpolation series for Jackson \(q\)-difference operators. (English) Zbl 1149.40001

It is outside the scope of a review to give the formulae needed to understand the main results of the paper explicitly. For readers knowledgable in \(q\)-theory these main results will be stated below:
A. Let \(0<R\leq \infty\) and \(f\) be analytic on \(\Omega_R\) with power series expansion \[ f(x)=\sum_{n=0}^{\infty}\,c_n x^n,\;x\in\Omega_R. \] Then \(f\) has the \(q\)-Taylor expansion
\[ f(x)=\sum_{k=0}^{\infty}\,{D_q^k f(a)\over\Gamma_q(k+1)}\,\varphi_k(x,a), \]
converging absolutely and uniformly on compact subsets of \(\Omega_R\).
B. Let \(f(x)\) be a function with \(q\)-exponential growth of order \(k,\;k<\ln q^{-1}\), and finite type \(\alpha,\;\alpha\in\mathbb R\). Then for \(a\in\mathbb C\setminus\{0\}\), \(f(x)\) has the expansion
\[ f(x)=\sum_{n=0}^{\infty}\,(-1)^n q^{-n(n-1)/2}\,{D_n^qf(aq^{-n})\over\Gamma_q(n+1)}\,\varphi_n(a,x), \]
converging absolutely and uniformly on compact subsets of \(\mathbb C\).

MSC:

40A30 Convergence and divergence of series and sequences of functions
33D05 \(q\)-gamma functions, \(q\)-beta functions and integrals
39A70 Difference operators
47B39 Linear difference operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M.H. Abu-Risha, M.H. Annaby, M.E.H. Ismail, Z.S. Mansour, Existence and uniqueness theorems of \(q\)-difference equations, submitted for publication; M.H. Abu-Risha, M.H. Annaby, M.E.H. Ismail, Z.S. Mansour, Existence and uniqueness theorems of \(q\)-difference equations, submitted for publication · Zbl 1143.39009
[2] Al-Salam, W. A., \(q\)-analogue of the Cauchy formula, Proc. Amer. Math. Soc., 17, 616-621 (1966) · Zbl 0145.06002
[3] Al-Salam, W. A.; Verma, A., A fractional Leibniz \(q\)-formula, Pacific J. Math., 60, 1-9 (1975) · Zbl 0328.44005
[4] Bezivin, J. P., Sur les équations fonctionelles \(p\)-adiques aux \(q\)-différences, Collect. Math., 43, 2, 125-140 (1992) · Zbl 0778.39009
[5] Bouzeffour, F., Interpolation of entire functions, product formula for basic sine function, J. Nonlinear Math. Phys., 13, 2, 293-301 (2006) · Zbl 1109.33019
[6] Gasper, G.; Rahman, M., Basic Hypergeometric Series (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1129.33005
[7] Hahn, W., Über die höheren Heineschen Reihen und eine einheitliche Theorie der sogenannten speziellen Funktionen, Math. Nachr., 3, 257-294 (1950) · Zbl 0038.05002
[8] Hayman, W. K., On the zeros of \(q\)-Bessel function, (Contemp. Math., vol. 382 (2005)), 205-216 · Zbl 1085.33015
[9] Ismail, M. E.H., The Askey-Wilson operator and summation theorems, (Contemp. Math., vol. 190 (1995)), 171-178 · Zbl 0839.33010
[10] Ismail, M. E.H.; Stanton, D., Applications of \(q\)-Taylor theorems, J. Comput. Appl. Math., 153, 259-272 (2003) · Zbl 1024.33012
[11] Ismail, M. E.H.; Stanton, D., \(q\)-Taylor theorems, polynomial expansions, and interpolation of entire functions, J. Approx. Theory, 123, 125-146 (2003) · Zbl 1035.30025
[12] Jackson, F. H., A generalization of the function \(\Gamma(n)\) and \(x^n\), Proc. Roy. Soc. London, 74, 64-72 (1904) · JFM 35.0460.01
[13] Jackson, F. H., On \(q\)-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh, 46, 64-72 (1908)
[14] Jackson, F. H., \(q\)-form of Taylor’s theorem, Messenger Math., 39, 62-64 (1909)
[15] Jackson, F. H., On \(q\)-definite integrals, Q. J. Pure Appl. Math., 41, 193-203 (1910) · JFM 41.0317.04
[16] López, B.; Marco, J. M.; Parcet, J., Taylor series for the Askey-Wilson operator and classical summation formulas, Proc. Amer. Math. Soc., 134, 8, 2259-2270 (2006) · Zbl 1092.33013
[17] Marco, J. M.; Parcet, J., A new approach to the theory of classical hypergeometric polynomials, Trans. Amer. Math. Soc., 358, 1, 183-214 (2006) · Zbl 1080.33016
[18] Ramis, J. P., About the growth of entire functions solutions of linear algebraic \(q\)-difference equations, Ann. Fac. Sci. Toulouse Math., 1, 6, 53-94 (1992) · Zbl 0796.39005
[19] Welter, M., Interpolation of entire functions on regular sparse sets and \(q\)-Taylor series, J. Theor. Nombres Bordeaux, 17, 397-404 (2005) · Zbl 1079.30032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.