×

Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota’s method, tanh-coth method and exp-function method. (English) Zbl 1147.65109

Summary: The generalized short wave equation (GSWW) is studied by three distinct methods. The Hirota’s bilinear method is used to derive multiple-soliton solutions for the completely integrable forms of the GSWW equation. The tanh-coth method is used to obtain single-soliton solutions for this equation. The exp-function method is also applied to derive a variety of travelling wave solutions with distinct physical structures for this non-linear evolution equation.

MSC:

65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

Software:

HIROTA.MAX; MACSYMA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Clarkson, P. A.; Mansfield, E. L., On a shallow water wave equation, Nonlinearity, 7, 975-1000 (1994) · Zbl 0803.35111
[2] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., The inverse scattering transform - Fourier analysis for nonlinear problems, Stud. Appl. Math., 53, 249-315 (1974) · Zbl 0408.35068
[3] Hirota, R.; Satsuma, J., \(N\)-soliton solutions of model equations for shallow water waves, J. Phys. Soc. Jpn., 40, 2, 611-612 (1976) · Zbl 1334.76016
[4] Hirota, R., A new form of Bäcklund transformations and its relation to the inverse scattering problem, Prog. Theor. Phys., 52, 5, 1498-1512 (1974) · Zbl 1168.37322
[5] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge University Press: Cambridge University Press Cambridge
[6] Hirota, R., Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 18, 1192-1194 (1971) · Zbl 1168.35423
[7] Hietarinta, J., A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equations, J. Math. Phys., 28, 8, 1732-1742 (1987) · Zbl 0641.35073
[8] Hietarinta, J., A search for bilinear equations passing Hirota’s three-soliton condition. II. mKdV-type bilinear equations, J. Math. Phys., 28, 9, 2094-2101 (1987) · Zbl 0658.35081
[9] Hereman, W.; Zhuang, W., A MACSYMA program for the Hirota method, 13th World Congress on Computation and Applied Mathematics, 2, 842-863 (1991)
[10] Hereman, W.; Zhuang, W., Symbolic computation of solitons with Macsyma, Comput. Appl. Math. II: Diff. Eq., 287-296 (1992) · Zbl 0765.35048
[11] W. Hereman, W. Zhuang, A MACSYMA program for the Hirota method, in: Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics, 22-26, 1991.; W. Hereman, W. Zhuang, A MACSYMA program for the Hirota method, in: Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics, 22-26, 1991.
[12] Ito, M., An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher order, J. Phys. Soc. Jpn., 49, 2, 771-778 (1980) · Zbl 1334.35282
[13] Sawada, K.; Kotera, T., A method for finding \(N\)-soliton solutions of the KdV equation and KdV-like equation, Prog. Theor. Phys., 51, 1355-1367 (1974) · Zbl 1125.35400
[14] Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math., 21, 467-490 (1968) · Zbl 0162.41103
[15] Matsuno, Y., Bilinear Transformation Method (1984), Academic Press · Zbl 0552.35001
[16] Malfliet, W., The tanh method: A tool for solving certain classes of nonlinear evolution and wave equations, J. Comput. Appl. Math., 164-165, 529-541 (2004) · Zbl 1038.65102
[17] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60, 7, 650-654 (1992) · Zbl 1219.35246
[18] Malfliet, W.; Hereman, Willy, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54, 563-568 (1996) · Zbl 0942.35034
[19] Malfliet, W.; Hereman, Willy, The tanh method: II. Perturbation technique for conservative systems, Phys. Scripta, 54, 569-575 (1996) · Zbl 0942.35035
[20] Wazwaz, A. M., The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput., 154, 3, 713-723 (2004) · Zbl 1054.65106
[21] Wazwaz, A. M., Partial Differential Equations: Methods and Applications (2002), Balkema Publishers: Balkema Publishers The Netherlands · Zbl 0997.35083
[22] Wazwaz, A. M., The tanh-coth and the sine-cosine methods for kinks, solitons, and periodic solutions for the Pochhammer-Chree equations, Appl. Math. Comput., 195, 24-33 (2008) · Zbl 1130.65104
[23] Wazwaz, A. M., The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput., 184, 2, 1002-1014 (2007) · Zbl 1115.65106
[24] Wazwaz, A. M., The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188, 1467-1475 (2007) · Zbl 1119.65100
[25] Wazwaz, A. M., New solitary-wave special solutions with compact support for the nonlinear dispersive \(K(m, n)\) equations, Chaos Solitons Fract., 13, 2, 321-330 (2002) · Zbl 1028.35131
[26] Wazwaz, A. M., Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method, Appl. Math. Comput., 190, 633-640 (2007) · Zbl 1243.35148
[27] Wazwaz, A. M., The tanh-coth and the sech methods for exact solutions of the Jaulent-Miodek equation, Phys. Lett. A, 366, 1/2, 85-90 (2007) · Zbl 1203.81069
[28] Wazwaz, A. M., Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl. Math. Comput., 190, 1198-1206 (2007) · Zbl 1123.65106
[29] Wazwaz, A. M., Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method, Appl. Math. Comput., 190, 633-640 (2007) · Zbl 1243.35148
[30] Wazwaz, A. M., Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl. Math. Comput., 190, 1198-1206 (2007) · Zbl 1123.65106
[31] Wazwaz, A. M., Multiple-soliton solutions for the Boussinesq equation, Appl. Math. Comput., 192, 479-486 (2007) · Zbl 1193.35201
[32] Wazwaz, A. M., The Hirota’s direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation, Appl. Math. Comput., 199, 1, 133-138 (2008) · Zbl 1153.65363
[33] Wazwaz, A. M., Multiple-front solutions for the Burgers-Kadomtsev-Petvisahvili equation, Appl. Math. Comput., 200, 1, 437-443 (2008) · Zbl 1153.65365
[34] Wazwaz, A. M., Multiple-soliton solutions for the Lax-Kadomtsev-Petvisahvili (Lax-KP) equation, Appl. Math. Comput., 201, 1-2, 166-174 (2008) · Zbl 1155.65383
[35] Wazwaz, A. M., The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves, Appl. Math. Comput., 201, 1-2, 489-503 (2008) · Zbl 1143.76018
[36] Wazwaz, A. M., Multiple-soliton solutions of two extended model equations for shallow water waves, Appl. Math. Comput., 201, 1-2, 790-799 (2008) · Zbl 1165.76007
[37] He, J.-H.; Wu, X.-H., Exp-function method for nonlinear wave equations, Chaos Solitons Fract., 30, 700-708 (2006) · Zbl 1141.35448
[38] Xu, F., Application of Exp-Function method to symmetric regularized long wave (SRLW) equation, Phys. Lett. A, 372, 252-257 (2008) · Zbl 1217.35110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.