×

Lifting of generic depth zero representations of classical groups. (English) Zbl 1147.22008

In this paper the author considers split classical groups of type \(B\) and \(C\) over a \(p\)-adic field \(k\). It is now known that generic depth zero supercuspidal representations of these lift to representations of appropriate general linear groups. The author studies this correspondence in more detail. He considers the decomposition of induced representations of the type \(I(s,\Pi \times \Sigma)\) at \(s=1\) constructed on a larger group of the same family as the original one. Here \(\Pi\) is a depth zero self-dual supercuspidal representation of a general linear group over \(k\) and \(\Sigma\) is a depth zero generic supercuspidal representation of the original group which corresponds to a tame regular discrete series representation. He also considers the behaviour of the \(L\) and \(\epsilon\) functions involved.

MSC:

22E35 Analysis on \(p\)-adic Lie groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Carter, R., Finite Groups of Lie Type, Wiley Classics Lib. (1993), Wiley-Intersci.: Wiley-Intersci. New York
[2] Cogdell, J.; Kim, H.; Piatetski-Shapiro, I.; Shahidi, F., Functoriality for the classical groups, Publ. Math. Inst. Hautes Études Sci., 99, 163-233 (2004) · Zbl 1090.22010
[3] S. DeBacker, M. Reeder, Depth zero supercuspidal \(L\)-packets and their stability, Ann. of Math., in press; S. DeBacker, M. Reeder, Depth zero supercuspidal \(L\)-packets and their stability, Ann. of Math., in press · Zbl 1193.11111
[4] Gross, B. H.; Reeder, M., From Laplace to Langlands via representations of orthogonal groups, Bull. Amer. Math. Soc., 43, 163-205 (2006) · Zbl 1159.11047
[5] Henniart, G., Correspondence de Langlands-Kazhdan explicite dans le cas non ramifié, Math. Nachr., 158, 7-26 (1992) · Zbl 0777.11048
[6] G. Henniart, Correspondence de Langlands et fonctions \(L\) des carrés extérieur et symt´rique, preprint, Inst. Hautes Études Sci., 2003; G. Henniart, Correspondence de Langlands et fonctions \(L\) des carrés extérieur et symt´rique, preprint, Inst. Hautes Études Sci., 2003
[7] Howlett, R. B.; Lehrer, G. I., Induced representations and generalized Hecke rings, Invent. Math., 58, 37-64 (1980) · Zbl 0435.20023
[8] D. Jiang, Residues of Eisenstein Series and Related Problems, Eisenstein Series and Applications, Birkhäuser, 2007, in press; D. Jiang, Residues of Eisenstein Series and Related Problems, Eisenstein Series and Applications, Birkhäuser, 2007, in press
[9] Jiang, D.; Soudry, D., The local converse theorem for \(SO(2 n + 1)\) and applications, Ann. of Math. (2), 157, 3, 743-806 (2003) · Zbl 1049.11055
[10] C. Khare, M. Larsen, G. Savin, Functoriality and the inverse Galois problem, Compos. Math., in press; C. Khare, M. Larsen, G. Savin, Functoriality and the inverse Galois problem, Compos. Math., in press · Zbl 1194.11062
[11] Kim, J., Gamma factors of certain supercuspidal representations, Math. Ann., 317, 4, 751-781 (2000) · Zbl 1034.11036
[12] Kutzko, P.; Morris, L., Level zero Hecke algebras and parabolic induction: The Siegel case for split classical groups, Int. Math. Res. Not., 2006, 1-40 (2006) · Zbl 1115.22013
[13] Lusztig, G., Characters of Reductive Groups over Finite Fields, Ann. of Math. Stud., vol. 107 (1984), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0572.20026
[14] Matsumoto, H., Analyse harmonique dans les systémes de Tits bornologiques de type affine, Lecture Notes in Math., vol. 590 (1977), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 0366.22001
[15] Moeglin, C., Points de reducibilité par les induites de cuspidales, J. Algebra, 268, 1, 81-117 (2003) · Zbl 1028.22016
[16] Morris, L., Tamely ramified Hecke algebras, Invent. Math., 114, 1-54 (1993) · Zbl 0854.22022
[17] Moy, A., The irreducible orthogonal and symplectic Galois representations of a \(p\)-adic field (the tame case), J. Number Theory, 10, 341-344 (1984) · Zbl 0546.12009
[18] Muić, G., Some results on square integrable representations: Irreducibility of standard representations, Int. Math. Res. Not., 1998, 14, 705-726 (1998) · Zbl 0909.22029
[19] Muić, G.; Savin, G., Symplectic-orthogonal theta lifts of generic discrete series, Duke Math. J., 101, 317-333 (2000) · Zbl 0955.22014
[20] Shahidi, F., A proof of Langlands’ conjecture on Plancherel measures; complementary series for \(p\)-adic groups, Ann. of Math., 132, 273-330 (1990) · Zbl 0780.22005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.