×

Global existence of small classical solutions to nonlinear Schrödinger equations. (English) Zbl 1143.35370

Summary: We study the global Cauchy problem for nonlinear Schrödinger equations with cubic interactions of derivative type in space dimension \(n\geqslant 3\). The global existence of small classical solutions is proved in the case where every real part of the first derivatives of the interaction with respect to first derivatives of a wavefunction is derived by a potential function of quadratic interaction. The proof depends on the energy estimate involving the quadratic potential and on the endpoint Strichartz estimates.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Cazenave, T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10 (2003), American Mathematical Society · Zbl 1055.35003
[2] Chang, N.-H.; Shatah, J.; Uhlenbeck, K., Schrödinger maps, Comm. Pure Appl. Math., 53, 590-602 (2003) · Zbl 1028.35134
[3] Chihara, H., Global existence of small solutions to semilinear Schrödinger equations with gauge invariance, Publ. RIMS, 31, 5, 731-753 (1995) · Zbl 0847.35126
[4] Chihara, H., The initial value problem for cubic semilinear Schrödinger equations, Publ. RIMS, 32, 3, 445-471 (1996) · Zbl 0870.35095
[5] Ginibre, J., Introduction aux équations de Schrödinger non linéaires (1998), Université Paris-Sud, L161
[6] Hayashi, N.; Hirata, H., Local existence in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system in the usual Sobolev space, Proc. Edinburgh Math. Soc., 40, 563-581 (1997) · Zbl 0910.35113
[7] Hayashi, N.; Kaikina, E. I., Local existence of solutions to the Cauchy problem for nonlinear Schrödinger equations, SUT J. Math., 34, 111-137 (1998) · Zbl 0920.35144
[8] Hayashi, N.; Miao, C.; Naumkin, P. I., Global existence of small solutions to the generalized derivative nonlinear Schrödinger equations, Asymptotic Anal., 21, 133-147 (1999) · Zbl 0937.35171
[9] Hayashi, N.; Ozawa, T., Remarks on nonlinear Schrödinger equations in one space dimension, Differential Integral Equations, 7, 453-461 (1994) · Zbl 0803.35137
[10] Hayashi, N.; Ozawa, T., Global, small radially symmetric solutions to nonlinear Schrödinger equations and a gauge transformation, Differential Integral Equations, 8, 1061-1072 (1995) · Zbl 0823.35157
[11] Kato, J., Existence and uniqueness of the solution to the modified Schrödinger map, Math. Res. Lett., 12, 2-3, 171-186 (2005) · Zbl 1082.35140
[12] Kato, T., Nonlinear Schrödinger equations, (Holden, H.; Jensen, A., Schrödinger Operators. Schrödinger Operators, Lecture Notes in Physics, vol. 345 (1989), Springer-Verlag: Springer-Verlag Berlin), 218-263
[13] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41, 891-907 (1988) · Zbl 0671.35066
[14] Keel, M.; Tao, T., Small data blow-up for semilinear Klein-Gordon equations, Amer. J. Math., 121, 3, 629-669 (1999) · Zbl 0931.35105
[15] Kenig, C.; Pollack, D.; Staffilani, G.; Toro, T., The Cauchy problem for Schrödinger flows into Kähler manifolds (29 Nov, 2005), arXiv:
[16] Kenig, C.; Ponce, G.; Vega, L., Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10, 3, 255-288 (1993) · Zbl 0786.35121
[17] Kenig, C.; Ponce, G.; Vega, L., Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., 134, 3, 489-545 (1998) · Zbl 0928.35158
[18] Klainerman, S., Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal., 78, 1, 73-98 (1982) · Zbl 0502.35015
[19] Klainerman, S., Weighted \(L^\infty\) and \(L^1\) estimates for solutions to the classical wave equation in three space dimensions, Comm. Pure Appl. Math., 37, 2, 269-288 (1984) · Zbl 0583.35068
[20] Klainerman, S.; Ponce, G., Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math., 36, 1, 133-141 (1983) · Zbl 0509.35009
[21] Lindblad, H.; Sogge, C., On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130, 2, 357-426 (1995) · Zbl 0846.35085
[22] Machihara, S.; Nakanishi, K.; Ozawa, T., Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Math. Ann., 322, 3, 603-621 (2002) · Zbl 0991.35080
[23] Machihara, S.; Nakanishi, K.; Ozawa, T., Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana, 19, 1, 179-194 (2003) · Zbl 1041.35061
[24] Nahmod, A.; Stefanov, A.; Uhlenbeck, K., On Schrödinger maps, Comm. Pure Appl. Math., 56, 1, 114-151 (2003) · Zbl 1028.58018
[25] Nakamura, M.; Ozawa, T., Small data scattering for nonlinear Schrödinger, wave and Klein-Gordon equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1, 435-460 (2002) · Zbl 1121.35086
[26] Ozawa, T., Finite energy solutions for the Schrödinger equations with quadratic nonlinearity in one space dimension, Funkcial. Ekvac., 41, 3, 451-468 (1998) · Zbl 1140.35565
[27] Ozawa, T., Remarks on quadratic nonlinear Schrödinger equations, Funkcial. Ekvac., 38, 2, 217-232 (1995) · Zbl 0842.35060
[28] Shatah, J., Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, 46, 3, 409-425 (1982) · Zbl 0518.35046
[29] Shatah, J.; Zeng, C., Schrödinger maps and anti-ferromagnetic chains, Comm. Math. Phys., 262, 2, 299-315 (2006) · Zbl 1104.58007
[30] Soyeur, A., The Cauchy problem for the Ishimori equations, J. Funct. Anal., 105, 2, 233-255 (1992) · Zbl 0763.35077
[31] Sulem, C.; Sulem, P.-L., The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139 (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0928.35157
[32] Tonegawa, S., Global existence for a class of cubic nonlinear Schrödinger equations in one space dimension, Hokkaido Math. J., 30, 2, 451-473 (2001) · Zbl 1045.35082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.