×

Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays. (English) Zbl 1139.35360

This paper presents and establishes the existence and stability of travelling wavefronts which implies that there exists a zone which will lead to the separation of two species in spatial domain if the initial and boundary value are satisfied. A number of theorems, lemmas are developed for theoretical foundation and mathematical analysis. The paper does not present any numerical experiments.

MSC:

35K57 Reaction-diffusion equations
35R10 Partial functional-differential equations
35K55 Nonlinear parabolic equations
35B35 Stability in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ai, S., Traveling wavefronts for generalized Fisher equations with spatio-temporal delays, J. Differential Equations, 232, 104-133 (2007) · Zbl 1113.34024
[2] Al-Omari, J.; Gourley, S. A., Monotone traveling fronts in age-structured reaction-diffusion model of a single species, J. Math. Biol., 45, 294-312 (2002) · Zbl 1013.92032
[3] Al-Omari, J.; Gourley, S. A., Monotone wave-fronts in a structured population model with distributed maturation delay, IMA J. Appl. Math., 70, 858-879 (2005) · Zbl 1086.92043
[4] Ashwin, P.; Bartuccelli, M. V.; Bridges, T. J.; Gourley, S. A., Traveling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 53, 103-122 (2002) · Zbl 1005.92024
[5] Britton, N. F., Aggregation and the competitive exclusion principle, J. Theoret. Biol., 136, 57-66 (1989)
[6] Britton, N. F., Spatial structures and periodic traveling waves in an integro-differential reaction diffusion population model, SIAM J. Appl. Math., 50, 1663-1688 (1990) · Zbl 0723.92019
[7] Chen, X., Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equation, Adv. Differential Equations, 2, 125-160 (1997) · Zbl 1023.35513
[8] Chen, X.; Fu, S.; Guo, J., Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38, 233-258 (2006) · Zbl 1117.34060
[9] Conley, C.; Gardner, R., An application of the generalized Morse index to traveling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33, 319-343 (1984) · Zbl 0565.58016
[10] Daners, I. D.; Medina, P. K., Abstract Evolution Equation: Periodic Problems and Application, Pitman Res. Notes Math., vol. 279 (1992), Longman Sci. & Tech.
[11] Evans, L. C., Partial Differential Equations (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI
[12] Faria, T.; Huang, W.; Wu, J., Traveling waves for delayed reaction-diffusion equations with global response, Proc. R. Soc. Lond. Ser. A, 462, 229-261 (2006) · Zbl 1149.35368
[13] Fenichel, N., Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31, 53-98 (1979) · Zbl 0476.34034
[14] Fisher, R. A., The wave of advance of advantageous gene, Ann. Eugen., 7, 355-369 (1937)
[15] Fusco, G.; Hale, J. K.; Xun, J., Traveling waves as limits of solutions on bounded domain, SIAM J. Math. Anal., 27, 1544-1558 (1996) · Zbl 0874.35008
[16] Gardner, S. A., Existence and stability of traveling wave solutions of competition model: A degree theoretical approach, J. Differential Equations, 44, 343-364 (1982) · Zbl 0446.35012
[17] Gourley, S. A.; Kuang, Y., Wavefronts and global stability in a time-delayed population model with stage structure, Proc. R. Soc. Lond. Ser. A, 459, 1563-1579 (2003) · Zbl 1047.92037
[18] Gourley, S. A.; Ruan, S., Convergence and traveling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35, 806-822 (2003) · Zbl 1040.92045
[19] Gourley, S. A.; So, J. W.-H.; Wu, J., Nonlocality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics, J. Math. Sci., 124, 5119-5153 (2004) · Zbl 1128.35360
[20] Gourley, S.; Wu, J., Delayed non-local diffusive systems in biological invasion and disease spread, (Nonlinear Dynamics and Evolution Equations. Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., vol. 48 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 137-200 · Zbl 1130.35127
[21] Hale, J.; Verduyn Lunel, S., Introduction to Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0787.34002
[22] Huang, W., Uniqueness of the bistable traveling wave for mutualist species, J. Dynam. Differential Equations, 13, 147-183 (2001) · Zbl 1004.34014
[23] Kanel, J. I.; Zhou, L., Existence of wavefront solutions and estimates of wave speed for a competition-diffusion systems, Nonlinear Anal., 27, 579-587 (1996) · Zbl 0857.35059
[24] Kan-on, Y.; Fang, Q., Stability of monotone travelling waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13, 343-349 (1996) · Zbl 0860.35053
[25] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Academic Press: Academic Press Boston · Zbl 0777.34002
[26] Levin, S. A., Spatial patterning in the structure of ecological communities, (Levin, S. A., Lectures on Mathematics in the Life Sciences, vol. 8 (1976), Amer. Math. Soc.: Amer. Math. Soc. Providence), 1-36
[27] Levin, S. A., Population models and community structure in heterogeneous environments, (Levin, S. A., Studies in Mathematical Biology, II: Population and Communities, vol. 8 (1978), Amer. Math. Soc.: Amer. Math. Soc. Providence), 439-476
[28] Li, W. T.; Lin, G.; Ruan, S., Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19, 1253-1273 (2006) · Zbl 1103.35049
[29] Li, W. T.; Wang, Z. C., Traveling fronts in diffusive and cooperative Lotka-Volterra system with non-local delays, Z. Angew. Math. Phys., 58, 571-591 (2007) · Zbl 1130.35079
[30] W.T. Li, S.L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-III functional response, Chaos Solitons Fractals, in press; W.T. Li, S.L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-III functional response, Chaos Solitons Fractals, in press · Zbl 1155.37046
[31] Lin, G. J.; Yuan, R., Traveling wave solutions for two species competition diffusion model with nonlocal delays, J. Beijing Normal Univ. (Natur. Sci.), 41, 460-463 (2005) · Zbl 1091.35546
[32] Ma, S., Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171, 294-314 (2001) · Zbl 0988.34053
[33] Ma, S.; Zou, X., Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212, 129-190 (2005) · Zbl 1086.34064
[34] Martin, R. H.; Smith, H. L., Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321, 1-44 (1990) · Zbl 0722.35046
[35] Martin, R. H.; Smith, H. L., Reaction-diffusion systems with the time delay: Monotonicity, invariance, comparison and convergence, J. Reine Angew. Math., 413, 1-35 (1991) · Zbl 0709.35059
[36] McCord, C.; Mischaikow, K., Connected simple systems, transition matrices, and heteroclinic bifurcations, Trans. Amer. Math. Soc., 333, 397-422 (1992) · Zbl 0763.34028
[37] Mischaikow, K., Travelling waves for a cooperative and a competitive-cooperative system, (Shearer, M., Viscous Profiles and Numerical Methods for Shock Waves (1991), SIAM: SIAM Philadelphia), 125-141 · Zbl 0729.76638
[38] Mischaikow, K., Transition systems, Proc. Roy. Soc. Edinburgh Sect. A, 112, 155-175 (1989) · Zbl 0677.34046
[39] Mischaikow, K.; Reineck, J. F., Travelling waves in predator-prey systems, SIAM J. Math. Anal., 24, 1179-1214 (1993) · Zbl 0815.35045
[40] Mischaikow, K.; Hutson, V., Traveling waves for mutualist species, SIAM J. Math. Anal., 24, 987-1008 (1993) · Zbl 0815.35044
[41] Olden, J. D.; Jackson, D. A.; Peres-Neto, P. R., Spatial isolation and fish communities in drainage lakes, Oecologia, 127, 572-585 (2001)
[42] Ou, C.; Wu, J., Persistence of wavefronts in delayed nonlocal reaction-diffusion equations, J. Differential Equations, 235, 219-261 (2007) · Zbl 1117.35037
[43] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0516.47023
[44] Ruan, S., Spatial-Temporal Dynamics in Nonlocal Epidemiological Models, (Takeuchi, Y.; Sato, K.; Iwasa, Y., Mathematics for Life Science and Medicine, vol. 2 (2007), Springer-Verlag: Springer-Verlag New York)
[45] Ruan, S.; Wu, J., Reaction-diffusion systems with infinite delay, Can. Appl. Math. Q., 2, 485-550 (1994) · Zbl 0836.35158
[46] Sattinger, D. H., On the stability of waves of nonlinear parabolic systems, Adv. Math., 22, 312-355 (1976) · Zbl 0344.35051
[47] Schaaf, K. W., Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 302, 587-615 (1987) · Zbl 0637.35082
[48] Silvertown, J.; Holtier, S.; Johnson, J.; Dale, P., Cellular automation models of interspecific competition for space—The effect of pattern on process, J. Ecol., 80, 527-534 (1992)
[49] Smith, H. L.; Zhao, X., Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31, 514-534 (2000) · Zbl 0941.35125
[50] Smoller, J., Shock Waves and Reaction-Diffusion Equations (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0807.35002
[51] Tang, M. M.; Fife, P., Propagating fronts for competing species equations with diffusion, Arch. Ration. Mech. Anal., 73, 69-77 (1980) · Zbl 0456.92019
[52] Travis, C. C.; Webb, G. F., Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc., 200, 395-418 (1974) · Zbl 0299.35085
[53] Treves, D. S.; Xia, B.; Zhou, J.; Tiedje, J. M., A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil, Microbial Ecology, 45, 20-28 (2003)
[54] van Vuuren, J. H., The existence of traveling plane waves in a general class of competition-diffusion systems, IMA J. Appl. Math., 55, 135-148 (1995) · Zbl 0841.35050
[55] Volpert, A. I.; Volpert, V. A.; Volpert, V. A., Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr., vol. 140 (1994), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0835.35048
[56] Wang, Z. C.; Li, W. T., Monotone travelling fronts of a food-limited population model with nonlocal delay, Nonlinear Anal., 8, 699-712 (2007) · Zbl 1152.35408
[57] Wang, Z. C.; Li, W. T.; Ruan, S., Traveling wavefronts of reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222, 185-232 (2006)
[58] Wang, Z. C.; Li, W. T.; Ruan, S., Existence and stability of traveling wavefronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238, 153-200 (2007) · Zbl 1124.35089
[59] Wu, J., Theory and Applications of Partial Functional Differential Equations (1996), Springer-Verlag: Springer-Verlag New York
[60] Wu, J.; Zou, X., Traveling wavefronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13, 651-687 (2001) · Zbl 0996.34053
[61] S.L. Wu, W.T. Li, Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to population models, Chaos Solitons Fractals, in press; S.L. Wu, W.T. Li, Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to population models, Chaos Solitons Fractals, in press · Zbl 1197.35133
[62] Ye, Q.; Li, Z., Introduction to Reaction-Diffusion Equations (1990), Science Press: Science Press Beijing
[63] Zinner, B., Stability of traveling wavefronts for the discrete Nagumo equation, SIAM J. Math. Anal., 22, 1016-1020 (1991) · Zbl 0739.34060
[64] Zou, X.; Wu, J., Existence of traveling wavefronts in delayed reaction-diffusion systems via the monotone iteration method, Proc. Amer. Math. Soc., 125, 2589-2598 (1997) · Zbl 0992.34043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.