×

Dark energy and dark gravity: theory overview. (English) Zbl 1137.83303

Summary: Observations provide increasingly strong evidence that the universe is accelerating. This revolutionary advance in cosmological observations confronts theoretical cosmology with a tremendous challenge, which it has so far failed to meet. Explanations of cosmic acceleration within the framework of general relativity are plagued by difficulties. General relativistic models are nearly all based on a dark energy field with fine-tuned, unnatural properties. There is a great variety of models, but all share one feature in common-an inability to account for the gravitational properties of the vacuum energy. Speculative ideas from string theory may hold some promise, but it is fair to say that no convincing model has yet been proposed. An alternative to dark energy is that gravity itself may behave differently from general relativity on the largest scales, in such a way as to produce acceleration. The alternative approach of modified gravity (or dark gravity) provides a new angle on the problem, but also faces serious difficulties, including in all known cases severe fine-tuning and the problem of explaining why the vacuum energy does not gravitate. The lack of an adequate theoretical framework for the late-time acceleration of the universe represents a deep crisis for theory-but also an exciting challenge for theorists. It seems likely that an entirely new paradigm is required to resolve this crisis.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83F05 Relativistic cosmology
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Spergel, D.N., et al.: [WMAP Collaboration], Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Astrophys. J. 657, 645 (2007) [arXiv:astro-ph/0603449]
[2] Percival, W.J., et al.: The shape of the SDSS DR5 galaxy power spectrum. Astrophys. J. 665, 377 (2007) [arXiv:astro-ph/0608636]
[3] Henry Tye, S.H.: Brane inflation: string theory viewed from the cosmos. arXiv:hep-th/0610221
[4] Kallosh, R.: On inflation in string theory. arXiv:hep-th/0702059 · Zbl 1161.83301
[5] Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006) [arXiv:gr-qc/0607039] · Zbl 1197.83047
[6] Bojowald, M.: Loop quantum cosmology. Living Rev. Rel. 8,11 (2005) [arXiv:gr-qc/0601085] · Zbl 1255.83133
[7] Erickson, J.K., Gratton, S., Steinhardt, P.J., Turok, N.: Cosmic perturbations through the cyclic ages. arXiv:hep-th/0607164
[8] Brandenberger, R.H.: String gas cosmology and structure formation: a brief review. arXiv:hep-th/0702001
[9] Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006) [arXiv:hep-th/0603057] · Zbl 1203.83061
[10] Perivolaropoulos, L.: Accelerating universe: observational status and theoretical implications. arXiv:astro-ph/0601014
[11] Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Math. Phys. 4, 115 (2007) [arXiv:hep-th/0601213] · Zbl 1112.83047
[12] Padmanabhan, T.: Dark Energy: Mystery of the Millennium. AIP Conf. Proc. 861, 179 (2006) [arXiv:astro-ph/0603114]
[13] Straumann, N.: Dark energy: recent developments. Mod. Phys. Lett. A 21, 1083 (2006) [arXiv:hep-ph/0604231]
[14] Bludman, S.: Cosmological acceleration: dark energy or modified gravity? arXiv:astro-ph/0605198
[15] Uzan, J.P.: The acceleration of the universe and the physics behind it. arXiv:astro-ph/0605313 · Zbl 1137.83386
[16] Polarski, D.: Dark energy: beyond general relativity? AIP Conf. Proc. 861, 1013 (2006) [arXiv:astro-ph/0605532] · Zbl 1103.83021
[17] Ruiz-Lapuente, P.: Dark energy, gravitation and supernovae. Class. Quant. Grav. 24, R91 (2007) [arXiv:0704.1058] · Zbl 1117.85002
[18] Enqvist, K.: this volume
[19] Goodman, J.: Geocentrism reexamined. Phys. Rev. D52, 1821 (1995) [arXiv:astro-ph/9506068]
[20] Ellis, G.F.R., Maartens, R.: The emergent universe: inflationary cosmology with no singularity. Class. Quant. Grav. 21, 223 (2004) [arXiv:gr-qc/0211082] · Zbl 1061.83071
[21] Hlozek, R., Cortes, M., Bassett, B.A., Clarkson, C.: this volume
[22] Knop, R.A., et al.: [The Supernova Cosmology Project Collaboration], New constraints on {\(\Omega\)} M , {\(\Omega\)}{\(\Lambda\)}, and w from an independent set of eleven high-redshift supernovae observed with HST. Astrophys. J. 598, 102 (2003) [arXiv:astro-ph/0309368]
[23] Wood-Vasey, W.M. et al. Observational Constraints on the Nature of the Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey. arXiv:astro-ph/0701041
[24] Leibundgut, B.: this volume
[25] Nichol, R.: this volume
[26] Sarkar, S.: this volume
[27] Bressi G., Carugno G., Onofrio R. and Ruoso G. (2002). Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88: 041804 · Zbl 0966.83508 · doi:10.1103/PhysRevLett.88.041804
[28] Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rept. 353, 1 (2001) [arXiv:quant-ph/0106045] · Zbl 0972.81212
[29] Padmanabhan, T.: this volume
[30] Bousso, R.: this volume
[31] Linder, E.: this volume
[32] Buchert, T.: this volume
[33] Capozziello, S., Francaviglia, M.: this volume
[34] Koyama, K.: this volume
[35] Ostrogradski M. (1850). Memoire Academie St. Petersbourg, Ser. VI 4: 385
[36] Woodard, R.P.: Avoiding Dark Energy with 1/R Modifications of Gravity (2006) [arXiv:astro-ph/0601672]
[37] Bonvin, C., Caprini, C., Durrer, R.: (2007) [arXiv:0706.1538]
[38] Velo G. and Zwanzinger D. (1969). Propagation and quantization of Rarita–Schwinger waves in an external electromagnetic potential. Phys. Rev. 186: 1337 · doi:10.1103/PhysRev.186.1337
[39] Velo G. and Zwanzinger D. (1969). Noncausality and other defects of interaction Lagrangians for particles with spin one and higher. Phys. Rev. 188: 2218 · doi:10.1103/PhysRev.188.2218
[40] Morris M.S., Thorne K.S. and Yurtsever U. (1988). Wormholes, time machines and the weak energy condition. Phys. Rev. Lett. 61: 1446 · doi:10.1103/PhysRevLett.61.1446
[41] Gott J.R. (1991). Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions. Phys. Rev. Lett. 66: 1126 · Zbl 0968.83506 · doi:10.1103/PhysRevLett.66.1126
[42] Ori, A.: Formation of closed timelike curves in a composite vacuum/dust asymptotically-flat spacetime. Phys. Rev. D76, 044002 (2007) [arXiv:gr-qc/0701024]
[43] Bonnor W.B. and Steadman B.R. (2005). Exact solutions of the Einstein–Maxwell equations with closed timelike curves. Gen. Rel. Grav. 37: 1833 · Zbl 1091.83008 · doi:10.1007/s10714-005-0163-3
[44] Babichev, E., Mukhanov, V., Vikman, A.: k-essence, superluminal propagation, causality and emergent geometry. (2007) [arXiv:0708.0561]
[45] Froissart M. (1961). Asymptotic behavior and subtractions in the Mandelstam representation. Phys. Rev. 123: 1053 · Zbl 0127.44502 · doi:10.1103/PhysRev.123.1053
[46] Itzykson C. and Zuber J.B. (1980). Quantum Field Theory, Chap. 5. McGraw Hill, New York · Zbl 0453.05035
[47] Adams, A., Arkani-Hamed, N., Dubovsky, S., Nicolis, A., Rattazzi, R.: Causality, analyticity and an IR obstruction to UV completion. JHEP 0610, 014 (2006) [arXiv:hep-th/0602178]
[48] Polchinski, J.: The cosmological constant and the string landscape. arXiv:hep-th/0603249 · Zbl 1163.83001
[49] Bousso, R.: Precision cosmology and the landscape. arXiv:hep-th/0610211
[50] Padmanabhan, T.: Why does gravity ignore the vacuum energy? Int. J. Mod. Phys. D 15, 2029 (2006) [arXiv:gr-qc/0609012] · Zbl 1114.83017
[51] Amendola, L., Campos, G.C., Rosenfeld, R.: Consequences of dark matter-dark energy interaction on cosmological parameters derived from SNIa data. (2006) [arXiv:astro-ph/0610806]
[52] Guo, Z.K., Ohta, N., Tsujikawa, S.: Probing the coupling between dark components of the Universe. Phys. Rev. D76, 023508 (2007) [arXiv:astro-ph/0702015]
[53] Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85 4438 (2000) [arXiv:astro-ph/0004134]
[54] Bonvin, C., Caprini, C., Durrer, R.: A no-go theorem for k-essence dark energy. Phys. Rev. Lett. 97, 081303 (2006) [arXiv:astro-ph/0606584] · Zbl 1228.83119
[55] Ellis, G., Maartens, R., MacCallum, M.: Causality and the speed of sound. arXiv:gr-qc/0703121 · Zbl 1181.83019
[56] Kunz, M.: The dark degeneracy: on the number and nature of dark components. (2007) [arXiv:astro-ph/0702615]
[57] Kolb, E.W., Matarrese, S., Notari, A., Riotto, A.: Primordial inflation explains why the universe is accelerating today. arXiv:hep-th/0503117
[58] Geshnizjani, G., Chung, D.J.H., Afshordi, N.: Do large-scale inhomogeneities explain away dark energy? Phys. Rev. D 72, 023517 (2005) [arXiv:astro-ph/0503553]
[59] Hirata, C.M., Seljak, U.: Can superhorizon cosmological perturbations explain the acceleration of the universe? Phys. Rev. D 72, 083501 (2005) [arXiv:astro-ph/0503582]
[60] Flanagan, E.E.: Can superhorizon perturbations drive the acceleration of the universe? Phys. Rev. D 71, 103521 (2005) [arXiv:hep-th/0503202]
[61] Rasanen, S.: Backreaction and spatial curvature in a dust universe. Class. Quant. Grav. 23, 1823 (2006) [arXiv:astro-ph/0504005]
[62] Coley, A.A., Pelavas, N., Zalaletdinov, R.M.: Cosmological solutions in macroscopic gravity. Phys. Rev. Lett. 95, 151102 (2005) [arXiv:gr-qc/0504115] · Zbl 1255.83136
[63] Alnes, H., Amarzguioui, M., Gron, O.: Can a dust dominated universe have accelerated expansion? JCAP 0701, 007 (2007) [arXiv:astro-ph/0506449]
[64] Giovannini, M.: Gradient expansion(s) and dark energy. JCAP 0509, 009 (2005) [arXiv:astro-ph/0506715]
[65] Nambu, Y., Tanimoto, M.: Accelerating universe via spatial averaging. arXiv:gr-qc/0507057
[66] Ishibashi, A., Wald, R.M.: Can the acceleration of our universe be explained by the effects of inhomogeneities? Class. Quant. Grav. 23, 235 (2006) [arXiv:gr-qc/0509108] · Zbl 1148.83027
[67] Buchert, T.: On globally static and stationary cosmologies with or without a cosmological constant and the dark energy problem. Class. Quant. Grav. 23, 817 (2006) [arXiv:gr-qc/0509124] · Zbl 1089.83025
[68] Martineau, P., Brandenberger, R.: Back-reaction: a cosmological panacea. arXiv:astro-ph/0510523 · Zbl 1168.83013
[69] Mansouri, R.: Illuminating the dark ages of the universe: the exact backreaction in the SFRW model and the acceleration of the universe. arXiv:astro-ph/0601699
[70] Vanderveld, R.A., Flanagan, E.E., Wasserman, I.: Mimicking dark energy with Lemaitre–Tolman–Bondi models: weak central singularities and critical points. Phys. Rev. D 74, 023506 (2006) [arXiv:astro-ph/0602476]
[71] Moffat, J.W.: Late-time inhomogeneity and the acceleration of the universe. arXiv:astro-ph/0603777
[72] Paranjape, A., Singh, T.P.: The possibility of cosmic acceleration via spatial averaging in Lemaitre–Tolman–Bondi models. Class. Quant. Grav. 23, 6955 (2006) [arXiv:astro-ph/0605195] · Zbl 1123.83019
[73] Capozziello, S., Carloni, S., Troisi, A.: Quintessence without scalar fields. arXiv:astro-ph/0303041
[74] Amendola, L., Gannouji, R., Polarski, D., Tsujikawa, S.: Conditions for the cosmological viability of f(R) dark energy models. Phys. Rev. D75, 083504 (2007) [arXiv:gr-qc/0612180] · Zbl 1228.83115
[75] Chiba, T., Smith, T.L., Erickcek, A.L.: Solar System constraints to general f(R) gravity. Phys. Rev. D75, 124014 (2007) [arXiv:astro-ph/0611867]
[76] Dolgov, A.D., Kawasaki, M.: Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 573, 1 (2003) [arXiv:astro-ph/0307285] · Zbl 1037.83028
[77] Hu, W., Sawicki, I.: Models of f(R) Cosmic Acceleration that Evade Solar-System Tests. (2007) [arXiv:0705.1158v1]
[78] Starobinsky, A.A.: Disappearing cosmological constant in f(R) gravity. JETP Lett. 86, 157 (2007) [arXiv:0706.2041v2]
[79] Nojiri, S., Odintsov, S.D.: Unifying inflation with LambdaCDM epoch in modified f(R) gravity consistent with Solar System tests. Phys. Lett. B. 657, 238 (2007) [arXiv:0707.1941]
[80] Boisseau, B., Esposito-Farese, G., Polarski, D., Starobinsky, A.A.: Reconstruction of a scalar–tensor theory of gravity in an accelerating universe. Phys. Rev. Lett. 85, 2236 (2000) [arXiv:gr-qc/0001066]
[81] Riazuelo, A., Uzan, J.P.: Cosmological observations in scalar–tensor quintessence. Phys. Rev. D 66, 023525 (2002) [arXiv:astro-ph/0107386]
[82] Esposito-Farese, G.: Tests of scalar–tensor gravity. AIP Conf. Proc. 736, 35 (2004) [arXiv:gr-qc/0409081]
[83] Nesseris, S., Perivolaropoulos, L.: The limits of extended quintessence. Phys. Rev. D 75, 023517 (2007) [arXiv:astro-ph/0611238]
[84] Cavaglia, M.: Black hole and brane production in TeV gravity: a review. Int. J. Mod. Phys. A 18, 1843 (2003) [arXiv:hep-ph/0210296]
[85] Maartens, R.: Brane-world gravity. Living Rev. Rel. 7, 7 (2004) [arXiv:gr-qc/0312059] · Zbl 1071.83571
[86] Brax, P., van de Bruck, C., Davis, A.C.: Brane world cosmology. Rept. Prog. Phys. 67, 2183 (2004) [arXiv:hep-th/0404011]
[87] Sahni, V.: Cosmological surprises from braneworld models of dark energy. arXiv:astro-ph/0502032
[88] Durrer, R.: Braneworlds. AIP Conf. Proc. 782, 202 (2005) [arXiv:hep-th/0507006]
[89] Langlois, D.: Is our universe brany? Prog. Theor. Phys. Suppl. 163, 258 (2006) [arXiv:hep-th/0509231] · Zbl 1113.83022
[90] Lue, A.: The phenomenology of Dvali–Gabadadze–Porrati cosmologies. Phys. Rept. 423, 1 (2006) [arXiv:astro-ph/0510068] · Zbl 1222.83173
[91] Wands, D.: Brane-world cosmology. arXiv:gr-qc/0601078
[92] Dvali, G.R., Gabadadze, G., Porrati, M.: Metastable gravitons and infinite volume extra dimensions. Phys. Lett. B 484, 112 (2000) [arXiv:hep-th/0002190] · Zbl 1031.81688
[93] Deffayet, C.: Cosmology on a brane in Minkowski bulk. Phys. Lett. B 502, 199 (2001) [arXiv:hep-th/0010186] · Zbl 0977.83103
[94] Randall, L., Sundrum, R.: An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-th/9906064] · Zbl 0946.81074
[95] Binetruy, P., Deffayet, C., Ellwanger, U., Langlois, D.: Brane cosmological evolution in a bulk with cosmological constant. Phys. Lett. B 477, 285 (2000) [arXiv:hep-th/9910219]
[96] Maartens, R., Majerotto, E.: Observational constraints on self-accelerating cosmology. Phys. Rev. D 74, 023004 (2006) [arXiv:astro-ph/0603353]
[97] Lue, A., Scoccimarro, R., Starkman, G.D.: Probing Newton’s constant on vast scales: DGP gravity, cosmic acceleration and large scale structure. Phys. Rev. D 69, 124015 (2004) [arXiv:astro-ph/0401515]
[98] Lue, A., Starkman, G.: Gravitational leakage into extra dimensions: probing dark energy using local gravity. Phys. Rev. D 67, 064002 (2003) [arXiv:astro-ph/0212083]
[99] Linder, E.V.: Cosmic growth history and expansion history. Phys. Rev. D 72, 043529 (2005) [arXiv:astro-ph/0507263]
[100] Koyama, K., Maartens, R.: Structure formation in the DGP cosmological model. JCAP 0610, 016 (2006) [arXiv:astro-ph/0511634] · Zbl 1236.83015
[101] Cardoso, A., Koyama, K., Seahra, S.S., Silva, F.P.: Cosmological perturbations in the DGP braneworld: numeric solution. arXiv:0711.2563
[102] Kunz, M., Sapone, D.: Dark energy versus modified gravity. Phys. Rev. Lett. 98, 121301 (2007) [aXiv:astro-ph/0612452]
[103] Gorbunov, D., Koyama, K., Sibiryakov, S.: More on ghosts in DGP model. Phys. Rev. D73, 044016 (2006) [arXiv:hep-th/0512097]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.