×

A functorial construction of moduli of sheaves. (English) Zbl 1137.14026

This paper surveys GIT (geometric invariant theory) with an additional new insight coming from the presentation of coherent sheaves as Kronecker modules over an associative algebra. These Kronecker modules are modules for a path algebra of an easy quiver. This allows to give explicit theta functions on the eventually obtained moduli space. This paper is a detailed introduction to the construction of moduli spaces of coherent sheaves over a fixed projective scheme.
To describe the result of the article, let us fix notation:
\(X\), \(\mathcal O(1)\) is a projective scheme over an algebraically closed field \(k\), \(m>n\) are two integers (subject to some conditions), \(T\) is the sheaf \(\mathcal O(-n) \oplus \mathcal O(-m)\), and \(A\) is the endomorphism algebra End\((T)\).
In section 3 they show that Castelnuovo-Mumford regularity can be rephrased by saying that for a \(n\)-regular sheaf \(E\) the evaluation morphism Hom\((T,E) \otimes _A T \to E\) is an isomorphism. This implies that the embedding functor \(E \mapsto \) Hom\((T,E)\) is an embedding and \(E\) can be reconstructed from its image, whenever \(m \gg n\). In section 4 the embedding functor is applied to families. The key ingredient for this new presentation of GIT is Theorem 5.10 where for pure and \(n\)-regular sheaves the preservation of stability/semistability is shown. In section 6 they present the construction of the moduli space of semistable sheaves with given Hilbert polynomial on \(X\) using the map to the moduli of Kronecker modules over \(A\).
They show that this morphism \(\mathcal M_X^{ss} \to \mathcal M_A^{ss}\) is a closed embedding when char\((k)=0\). For char\((k)>0\) the authors show that it is a closed embedding on the stable locus. In the final section 7 they use results of the representation theory of quivers to define theta function on the moduli space, and investigate their separation properties. The global generatedness of these theta functions gives a nice semistability criterion for \(n\)-regular, pure sheaves on \(X\) (see Theorem 7.2) which says that \(E\) is semistable if a complex \(\delta: \mathcal O_X(-m)^{\oplus u_1} \to \mathcal O_X(-n)^{\oplus u_0}\) is cohomologically perpendicular to \(E\).
Reviewer: Georg Hein (Essen)

MSC:

14J10 Families, moduli, classification: algebraic theory
14J15 Moduli, classification: analytic theory; relations with modular forms
14D20 Algebraic moduli problems, moduli of vector bundles
14L24 Geometric invariant theory
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barth, W., Moduli of vector bundles on the projective plane, Invent. Math., 42, 63-91 (1977) · Zbl 0386.14005 · doi:10.1007/BF01389784
[2] Drezet, J.-M., Fibrés exceptionnels et variétés de modules de faisceaux semistables sur ℙ_2(ℂ), J. Reine Angew. Math., 380, 14-58 (1987) · Zbl 0613.14013
[3] Drezet, J.-M.; Narasimhan, M. S., Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math., 97, 53-94 (1989) · Zbl 0689.14012 · doi:10.1007/BF01850655
[4] Derksen, H.; Weyman, J., Semi-invariants of quivers and saturation of Littlewood-Richardson coefficients, J. Am. Math. Soc., 13, 467-479 (2000) · Zbl 0993.16011 · doi:10.1090/S0894-0347-00-00331-3
[5] Esteves, E., Separation properties of theta functions, Duke Math. J., 98, 565-593 (1999) · Zbl 0983.14028 · doi:10.1215/S0012-7094-99-09818-6
[6] Faltings, G., Stable G-bundles and projective connections, J. Alg. Geom., 2, 507-568 (1993) · Zbl 0790.14019
[7] Fulton, W.; Lang, S., Riemann-Roch Algebra (1985), New York: Springer, New York · Zbl 0579.14011
[8] Gieseker, D., On the moduli of vector bundles on an algebraic surface, Ann. Math., 106, 45-60 (1977) · Zbl 0381.14003 · doi:10.2307/1971157
[9] Gothen, P. B.; King, A. D., Homological algebra of twisted quiver bundles, J. London Math. Soc., 71, 85-99 (2005) · Zbl 1095.14012 · doi:10.1112/S0024610704005952
[10] Grothendieck, A.: Techniques de construction et théorèmes d’existence en géométrie algébrique IV: Les schémas de Hilbert. Séminaire Bourbaki, t. 13 (1960/61), vol. 221, pp. 249-276. Soc. Math. France, Paris (1995)
[11] Hartshorne, R., Algebraic Geometry (1977), New York, Heidelberg: Springer, New York, Heidelberg · Zbl 0367.14001
[12] Hulek, K.: On the classification of stable rank-r vector bundles over the projective plane. Vector bundles and differential equations, Nice 1979. Prog. Math., vol. 7, pp. 113-144. Birkhäuser, Boston (1980) · Zbl 0446.14006
[13] Huybrechts, D.; Lehn, M., The Geometry of Moduli Spaces of Sheaves (1997), Braunschweig: Vieweg, Braunschweig · Zbl 0872.14002
[14] King, A. D., Moduli of Representations of Finite Dimensional Algebras, Quart. J. Math. Oxford, 45, 515-530 (1994) · Zbl 0837.16005 · doi:10.1093/qmath/45.4.515
[15] Langer, A., Semistable sheaves in positive characteristic, Ann. Math., 159, 251-276 (2004) · Zbl 1080.14014 · doi:10.4007/annals.2004.159.251
[16] Langer, A., Moduli spaces of semistable sheaves in mixed characteristic, Duke Math. J., 124, 571-586 (2004) · Zbl 1086.14036 · doi:10.1215/S0012-7094-04-12434-0
[17] Langton, S. G., Valuative criteria for families of vector bundles on algebraic varieties, Ann. Math., 101, 88-110 (1975) · Zbl 0307.14007 · doi:10.2307/1970987
[18] Le Potier, J.: L’espace de modules de Simpson. Séminaire de géometrie algébrique, Jussieu, fév. 1992
[19] Le Potier, J., A propos de la construction de l’espace de modules des faisceaux semi-stables sur le plan projectif, Bull. Soc. Math. France, 122, 363-369 (1994) · Zbl 0829.14004
[20] Mac Lane, S., Categories for the Working Mathematician (1971), New York, Berlin: Springer, New York, Berlin · Zbl 0232.18001
[21] Maruyama, M., Moduli of stable sheaves II, J. Math. Kyoto Univ., 18, 557-614 (1978) · Zbl 0395.14006
[22] Maruyama, M., On boundedness of families of torsion free sheaves, J. Math. Kyoto Univ., 21, 673-701 (1981) · Zbl 0495.14009
[23] Mukai, S., An Introduction to Invariants and Moduli (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1033.14008
[24] Mumford, D.: Projective invariants of projective structures and applications. Proc. Int. Congr. Math. 1962, 526-530 (1963) · Zbl 0154.20702
[25] Mumford, D.; Fogarty, J., Geometric Invariant Theory (1982), Berlin: Springer, Berlin · Zbl 0504.14008
[26] Mumford, D., Lectures on Curves on an Algebraic Surface (1966), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0187.42701
[27] Newstead, P. E., Introduction to Moduli Problems and Orbit Spaces (1978), Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York · Zbl 0411.14003
[28] Nitsure, N.: Construction of Hilbert and Quot schemes. Fundamental algebraic geometry. Grothendieck’s FGA explained. Math. Surv. Monogr., vol. 123, pp. 105-137. Am. Math. Soc., Providence, RI (2005) · Zbl 1085.14001
[29] Rudakov, A., Stability for an abelian category, J. Algebra, 197, 231-245 (1997) · Zbl 0893.18007 · doi:10.1006/jabr.1997.7093
[30] Schofield, A.; Van den Bergh, M., Semi-invariants of quivers for arbitrary dimension vectors, Indag. Math., 12, 125-138 (2001) · Zbl 1004.16012 · doi:10.1016/S0019-3577(01)80010-0
[31] Seshadri, C. S., Space of unitary vector bundles on a compact Riemann surface, Ann. Math., 85, 303-336 (1967) · Zbl 0173.23001 · doi:10.2307/1970444
[32] Seshadri, C. S., Quotient spaces modulo reductive algebraic groups, Ann. Math., 95, 511-556 (1972) · Zbl 0241.14024 · doi:10.2307/1970870
[33] Seshadri, C. S., Vector bundles on curves, Contemp. Math., 153, 163-200 (1993) · Zbl 0799.14013
[34] Simpson, C., Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math., Inst. Hautes Étud. Sci., 79, 47-129 (1994) · Zbl 0891.14005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.