×

General definition of “conserved quantities” in general relativity and other theories of gravity. (English) Zbl 1136.83317

In general relativity, the notion of mass and other conserved quantities at spatial infinity can be defined in a natural way via the Hamiltonian framework: Each conserved quantity is associated with an asymptotic symmetry and the value of the conserved quantity is defined to be the value of the Hamiltonian which generates the canonical transformation on phase space corresponding to this symmetry. However, such an approach cannot be employed to define ‘conserved quantities’ in a situation where symplectic current can be radiated away (such as occurs at null infinity in general relativity) because there does not, in general, exist a Hamiltonian which generates the given asymptotic symmetry. (This fact is closely related to the fact that the desired ‘conserved quantities’ are not, in general conserved.) In this paper we give a prescription for defining ‘conserved quantities’ by proposing a modification of the equation that must be satisfied by a Hamiltonian. Our prescription is a very general one, and is applicable to a very general class of asymptotic conditions in arbitrary diffeomorphism covariant theories of gravity derivable from a Lagrangian, although we have not investigated existence and uniqueness issues in the most general contexts. In the case of general relativity with the standard asymptotic conditions at null infinity, our prescription agrees with the one proposed by T. Dray and M. Streubel [Classical Quantum Gravity 1, 15–26 (1984; Zbl 1136.83316)] from entirely different considerations.

MSC:

83C40 Gravitational energy and conservation laws; groups of motions

Citations:

Zbl 1136.83316
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Trautman, Bull. Acad. Pol. Sci., Ser. Sci., Math., Astron. Phys. 6 pp 407– (1958)
[2] H. Bondi, Proc. R. Soc. London A269 pp 21– (1962) · Zbl 0106.41903 · doi:10.1098/rspa.1962.0161
[3] R. Geroch, in: Asymptotic Structure of Space-Time (1977) · doi:10.1007/978-1-4684-2343-3_1
[4] P. T. Chrusciel, Phys. Rev. D 58 pp 084001– (1998) · doi:10.1103/PhysRevD.58.084001
[5] T. Dray, Class. Quantum Grav. 1 pp 15– (1984) · Zbl 1136.83316 · doi:10.1088/0264-9381/1/1/005
[6] W. Shaw, Class. Quantum Grav. 1 pp L33– (1984) · doi:10.1088/0264-9381/1/4/001
[7] T. Dray, Class. Quantum Grav. pp L7– (1985) · Zbl 0576.53066 · doi:10.1088/0264-9381/2/1/002
[8] R. Penrose, Proc. R. Soc. London A381 pp 53– (1982) · doi:10.1098/rspa.1982.0058
[9] A. Ashtekar, Proc. R. Soc. London A376 pp 585– (1981) · doi:10.1098/rspa.1981.0109
[10] A. Ashtekar, in: Mechanics, Analysis, and Geometry: 200 Years After Lagrange (1991)
[11] R. Arnowitt, in: Gravitation: An Introduction to Current Research (1962)
[12] T. Regge, Ann. Phys. (N.Y.) 88 pp 286– (1974) · Zbl 0328.70016 · doi:10.1016/0003-4916(74)90404-7
[13] J. Lee, J. Math. Phys. 31 pp 725– (1990) · Zbl 0704.70013 · doi:10.1063/1.528801
[14] V. Iyer, Phys. Rev. D 50 pp 846– (1994) · doi:10.1103/PhysRevD.50.846
[15] V. Iyer, Phys. Rev. D 52 pp 4430– (1995) · doi:10.1103/PhysRevD.52.4430
[16] A. Ashtekar, J. Math. Phys. 19 pp 1542– (1978) · doi:10.1063/1.523863
[17] L. Tamburino, Phys. Rev. 150 pp 1039– (1966) · doi:10.1103/PhysRev.150.1039
[18] J. Winicour, J. Math. Phys. 9 pp 861– (1968) · Zbl 0169.57702 · doi:10.1063/1.1664652
[19] R. Geroch, J. Math. Phys. 22 pp 803– (1981) · Zbl 0479.70004 · doi:10.1063/1.524987
[20] A. Ashtekar, Class. Quantum Grav. 9 pp 1069– (1992) · Zbl 0749.53042 · doi:10.1088/0264-9381/9/4/019
[21] G. A. Burnett, Proc. R. Soc. London A430 pp 57– (1990) · Zbl 0705.53038 · doi:10.1098/rspa.1990.0080
[22] R. M. Wald, in: General Relativity (1984)
[23] A. Ashtekar, Commun. Math. Phys. 86 pp 55– (1982) · Zbl 0504.53049 · doi:10.1007/BF01205661
[24] A. Ashtekar, J. Math. Phys. 23 pp 2410– (1982) · Zbl 0497.53061 · doi:10.1063/1.525283
[25] T. C. Quinn, Phys. Rev. D 60 pp 064009– (1999) · doi:10.1103/PhysRevD.60.064009
[26] L. F. Abbott, Nucl. Phys. B195 pp 76– (1982) · Zbl 0900.53033 · doi:10.1016/0550-3213(82)90049-9
[27] A. Ashtekar, Class. Quantum Grav. 1 pp L39– (1984) · doi:10.1088/0264-9381/1/4/002
[28] M. Henneaux, Phys. Lett. 142B pp 355– (1984) · doi:10.1016/0370-2693(84)91339-X
[29] M. Henneaux, Commun. Math. Phys. 98 pp 391– (1985) · Zbl 1032.83502 · doi:10.1007/BF01205790
[30] V. Balasubramanian, Commun. Math. Phys. pp 413– (1999) · Zbl 0946.83013 · doi:10.1007/s002200050764
[31] A. M. Awad, Phys. Rev. D 61 pp 084025– (2000) · doi:10.1103/PhysRevD.61.084025
[32] A. Ashtekar, Class. Quantum Grav. 17 pp L17– (2000) · Zbl 0943.83023 · doi:10.1088/0264-9381/17/2/101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.