×

Attractors for differential equations with unbounded delays. (English) Zbl 1135.34040

For some differential equations with infinite delay (e.g., of logistic or Volterra-Lotka-type), boundedness properties of the solutions are proved; such as compact attractors, absorbing sets, and pullback attractors in the non-autonomous case. The paper starts with a section that includes a set-valued context. The main techniques are assumptions on the nonlinearity like \( <F(x), x> \; \leq\; - \text{const}\cdot | | x| | ^2\), Gronwall type estimates, and the Arzelà-Ascoli theorem.

MSC:

34K25 Asymptotic theory of functional-differential equations
37L30 Attractors and their dimensions, Lyapunov exponents for infinite-dimensional dissipative dynamical systems
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Atkinson, F. V.; Haddock, J. R., On determining phase spaces for functional differential equations, Funkcial. Ekvac., 31, 331-347 (1988) · Zbl 0665.45004
[2] Babin, A. V.; Vishik, M. I., Attractors of Evolution Equations, Stud. Math. Appl., vol. 25 (1992), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam · Zbl 0778.58002
[3] Ball, J. M., Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10, 1-2, 31-52 (2004) · Zbl 1056.37084
[4] Burton, T.; Hutson, V., Repellers in systems with infinite delay, J. Math. Anal. Appl., 137, 240-263 (1989) · Zbl 0677.92016
[5] Caraballo, T.; Langa, J. A.; Valero, J., Global attractors for multi-valued random dynamical systems, Nonlinear Anal., 48, 805-829 (2002) · Zbl 1004.37035
[6] Caraballo, T.; Langa, J. A.; Melnik, V. S.; Valero, J., Pullback attractors of non-autonomous and stochastic multi-valued dynamical systems, Set-Valued Anal., 11, 2, 153-201 (2003) · Zbl 1018.37048
[7] Caraballo, T.; Langa, J. A.; Robinson, J., Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260, 2, 421-438 (2001) · Zbl 0997.34073
[8] Caraballo, T.; Łukaszewicz, G.; Real, J., Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal., 64, 3, 484-498 (2006) · Zbl 1128.37019
[9] Caraballo, T.; Marín-Rubio, P.; Valero, J., Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208, 1, 9-41 (2005) · Zbl 1074.34070
[10] Caraballo, T.; Real, J., Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205, 271-297 (2004) · Zbl 1068.35088
[11] Cheban, D. N.; Kloeden, P. E.; Schmalfuß, B., The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2, 2, 9-28 (2002) · Zbl 1054.34087
[12] Chepyzhov, V. V.; Vishik, M. I., Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76, 913-964 (1997) · Zbl 0896.35032
[13] Cushing, J. M., Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomath., vol. 20 (1979), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 0363.92014
[14] Fox, L.; Mayers, D. F.; Ockendon, J. R.; Tayler, A. B., On a functional differential equation, J. Inst. Math. Appl., 8, 271-307 (1971) · Zbl 0251.34045
[15] Hale, J. K., Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., vol. 25 (1988), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0642.58013
[16] Hale, J. K.; Kato, J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21, 11-41 (1978) · Zbl 0383.34055
[17] Hale, J. K.; Lunel, S. M.V., Introduction to Functional-Differential Equations, Appl. Math. Sci. (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0787.34002
[18] Hino, Y.; Murakami, S.; Naito, T., Functional Differential Equations with Infinite Delay, Lecture Notes in Math., vol. 1473 (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0732.34051
[19] Kato, J., Stability problem in functional differential equations with infinite delay, Funkcial. Ekvac., 21, 63-80 (1978) · Zbl 0413.34076
[20] Kato, S., Existence, uniqueness, and continuous dependence of solutions of delay-differential equations with infinite delays in a Banach space, J. Math. Anal. Appl., 195, 82-91 (1995) · Zbl 0846.34086
[21] Kato, T.; McLeod, J. B., The functional-differential equation \(y^\prime(x) = a y(\lambda x) + b y(x)\), Bull. Amer. Math. Soc., 77, 891-937 (1971) · Zbl 0236.34064
[22] Kloeden, P. E.; Schmalfuß, B., Non-autonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms, 14, 1-3, 141-152 (1997) · Zbl 0886.65077
[23] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Academic Press: Academic Press Boston · Zbl 0777.34002
[24] Ladyzhenskaya, O., Attractors for Semigroups and Evolution Equations, Lincei Lectures, vol. 25 (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0755.47049
[25] Marín-Rubio, P.; Robinson, J., Attractors for the stochastic 3D Navier-Stokes equations, Stoch. Dyn., 3, 279-297 (2003) · Zbl 1059.35100
[26] Melnik, V. S.; Valero, J., On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6, 83-111 (1998) · Zbl 0915.58063
[27] Murray, J. D., Mathematical Biology (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0779.92001
[28] Péics, H., On the asymptotic behaviour of a pantograph-type difference equation, J. Difference Equations Appl., 6, 3, 257-273 (2000) · Zbl 0963.39019
[29] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., vol. 68 (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0871.35001
[30] Wang, L.; Xu, D., Asymptotic behavior of a class of reaction-diffusion equations with delays, J. Math. Anal. Appl., 281, 2, 439-453 (2003) · Zbl 1031.35065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.