×

Analysis of the pseudoelastic behavior of a SMA beam by the element-free Galerkin method. (English) Zbl 1130.74490

Summary: This paper studies the numerical simulation of the pseudoelastic behavior of a shape memory alloy (SMA) beam using the element-free Galerkin method. A multi-dimensional SMA thermomechanical constitutive model is used to characterize the SMA material’s pseudoelastic behavior. The explicit incremental displacement-based element-free Galerkin formulation is developed by introducing moving least squares shape functions and continuum tangent stiffness tensors into a weak form of equilibrium equation in the referential configuration. An effective approach to enforce essential boundary conditions is introduced. To assess the performance of the proposed scheme in simulating the pseudoelastic behavior, an SMA beam problem is studied with different nodal arrangements and under different temperatures during the isothermal loading-unloading cycle.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74M05 Control, switches and devices (“smart materials”) in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Birman, V., Review of mechanics of shape memory alloy structures, Appl Mech Rev, 50, 11, 629-645 (1997)
[2] Brinson, L. C.; Lammering, R., Finite element analysis of the behavior of shape memory alloys and their applications, Int J Solids Struct, 30, 23, 3261-3280 (1993) · Zbl 0800.73484
[3] Trochu, F.; Qian, Y. Y., Nonlinear finite element simulation of superelastic shape-memory parts, Comput Struct, 62, 799-810 (1997) · Zbl 0899.73508
[4] Auricchio, F.; Taylor, R. L.; Lublinear, J., Shape-memory alloys: macromodeling and numerical simulations of the superelastic behavior, Comput Meth Appl Mech Engng, 146, 281-312 (1997) · Zbl 0898.73019
[5] Lagoudas, D. C.; Bo, Z.; Qidwai, M. A., A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composite, Mech Compos Mater Struct, 3, 153-179 (1996)
[6] Qidwai, M. A.; Lagoudas, D. C., Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms, Int J Numer Meth Engng, 47, 1123-1168 (2000) · Zbl 0960.74067
[7] Ren, J.; Liew, K. M.; Meguid, S. A., Nonlinear FE analysis of the hysteresis behaviour of SMA, Int J Comput Engng Sci, 2, 621-632 (2001)
[8] Liew, K. M.; Kitipornchai, S.; Ng, T. Y.; Zou, G. P., Multi-dimensional superelastic behavior of shape memory alloys via nonlinear finite element method, Engng Struct, 24, 51-58 (2002)
[9] Monaghan, J. J., An introduction to SPH, Comput Phys Commun, 48, 89-96 (1988) · Zbl 0673.76089
[10] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: difference approximation and diffuse elements, Comput Mech, 10, 583-594 (1992) · Zbl 0764.65068
[11] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshfree methods: an overview and recent developments, Comput Meth Appl Mech Engng, 139, 3-47 (1996) · Zbl 0891.73075
[12] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin method, Int J Numer Meth Engng, 37, 229-256 (1994) · Zbl 0796.73077
[13] Durate, C. A.; Oden, J. T., An h-p adaptive method using clouds, Comput Meth Appl Mech Engng, 139, 237-262 (1996) · Zbl 0918.73328
[14] Chen, J. S.; Pan, C.; Wu, C. T., Application of reproducing kernel particle methods for large deformation and contact analysis of elastomers, Rubber Chem Technol, 7, 191-213 (1998)
[15] Chen, J. S.; Pan, C.; Roque, C.; Wang, H. P., A Lagrangian reproducing kernel particle method for metal forming analysis, Comput Mech, 22, 289-307 (1998) · Zbl 0928.74115
[16] Liu, G. R., Meshfree methods, moving beyond the finite element method (2002), CRC Press: CRC Press Boca Raton, FL
[17] Atluri, S. N.; Kim, H. G.; Cho, J. Y., A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) and local boundary integral equation (LBIE) methods, Comput Mech, 24, 348-372 (1999) · Zbl 0977.74593
[18] Zhang, X.; Liu, X.; Lu, M. W.; Chen, Y., Imposition of essential boundary conditions by displacement constraint equations in meshless methods, Commun Numer Meth Engng, 17, 165-178 (2001) · Zbl 1102.74329
[19] Liew, K. M.; Ng, T. Y.; Zhao, X.; Reddy, J. N., Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells, Comput Meth Appl Mech Engng, 19, 4141-4157 (2002) · Zbl 1083.74609
[20] Liew KM, Zhao X, Ng TY. The element-free RKP-Ritz method for vibration of laminated rotating cylindrical panels. Int J Struct Stab Dyn; 2002;2:523-58.; Liew KM, Zhao X, Ng TY. The element-free RKP-Ritz method for vibration of laminated rotating cylindrical panels. Int J Struct Stab Dyn; 2002;2:523-58.
[21] Liew, K. M.; Huang, Y. Q.; Reddy, J. N., A hybrid moving least squares and differential quadrature (MLSDQ) meshfree method, Int J Comput Engng Sci, 2, 1-12 (2002)
[22] Liew, K. M.; Ng, T. Y.; Wu, Y. C., Meshfree method for large deformation analysis: a reproducing kernel particle approach, Engng Struct, 24, 543-551 (2002)
[23] Liew, K. M.; Wu, H. Y.; Ng, T. Y., Meshless method for modeling of human proximal femur: treatment of nonconvex boundaries and stress analysis, Comput Mech, 28, 390-400 (2002) · Zbl 1038.74053
[24] Liew, K. M.; Wu, Y. C.; Zou, G. P.; Ng, T. Y., Elasto-plasticity revisited: numerical analysis via reproducing kernel particle method and parametric quadratic programming, Int J Numer Meth Engng, 55, 669-683 (2002) · Zbl 1033.74050
[25] Wang, J.; Liew, K. M.; Tan, M. J.; Rajendran, S., Analysis of rectangular laminated composite plates via FSDT meshless method, Int J Mech Sci, 44, 1275-1293 (2002) · Zbl 1026.74082
[26] Liew KM, Huang YQ, Reddy JN. Moving least square differential quadrature method and its application to the analysis of shear deformable plates. Int J Numer Meth Engng 2003;56:2331-51.; Liew KM, Huang YQ, Reddy JN. Moving least square differential quadrature method and its application to the analysis of shear deformable plates. Int J Numer Meth Engng 2003;56:2331-51.
[27] Boyd, J. G.; Lagoudas, D. C., A thermodynamic constitutive model for shape memory alloy materials. Part I. The monolithic shape memory alloy, Int J Plast, 12, 805-842 (1996) · Zbl 0898.73020
[28] Tanaka, K., A phenomenological description on thermomechanics behavior of shape memory alloys, ASME J Pressure Vessel Technol, 112, 158-163 (1990)
[29] Liang, C.; Rogers, C. A., A multi-dimensional constitutive model for shape memory alloys, J Engng Math, 26, 429-443 (1992) · Zbl 0765.73004
[30] Brinson, L. C., One dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions, J Int Mater Sys Struct, 4, 229-242 (1995)
[31] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least-squares method, Math Comput, 37, 141-158 (1981) · Zbl 0469.41005
[32] Reddy, J. N., An introduction to the finite element method (1993), McGraw-Hill: McGraw-Hill New York
[33] Reddy, J. N., Energy principles and variational methods in applied mechanics (2003), Wiley: Wiley New York
[34] Simo, J. C.; Oritz, M., A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput Meth Appl Mech Engng, 49, 221-245 (1985) · Zbl 0566.73035
[35] Simo, J. C.; Taylor, R. L., A return mapping algorithm for plane stress elastoplasticity, Int J Numer Meth Engng, 22, 649-670 (1986) · Zbl 0585.73059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.