×

Penalized nonparametric mean square estimation of the coefficients of diffusion processes. (English) Zbl 1127.62067

Summary: We consider a one-dimensional diffusion process \((X_t)\) which is observed at \(n+1\) discrete times with regular sampling interval \(\Delta\). Assuming that \((X_t)\) is strictly stationary, we propose nonparametric estimators of the drift and diffusion coefficients obtained by a penalized least squares approach. Our estimators belong to a finite-dimensional function space whose dimension is selected by a data-driven method. We provide non-asymptotic risk bounds for the estimators. When the sampling interval tends to zero while the number of observations and the length of the observation time interval tend to infinity, we show that our estimators reach the minimax optimal rates of convergence. Numerical results based on exact simulations of diffusion processes are given for several examples of models and illustrate the qualities of our estimation algorithms.

MSC:

62M05 Markov processes: estimation; hidden Markov models
62G05 Nonparametric estimation
65C60 Computational problems in statistics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abramowitz, M. and Stegun, I.A. (eds) (1972)., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . New York: Wiley. · Zbl 0543.33001
[2] Banon, G. (1978). Nonparametric identification for diffusion processes., SIAM J. Control Optim. 16 380–395. · Zbl 0404.93045 · doi:10.1137/0316024
[3] Baraud, Y. (2002). Model selection for regression on a random design., ESAIM Probab. Statist. 6 127–146. · Zbl 1059.62038 · doi:10.1051/ps:2002007
[4] Baraud, Y., Comte, F. and Viennet, G. (2001). Adaptive estimation in an autoregression and a geometrical \(\beta\)-mixing regression framework., Ann. Statist. 29 839–875. · Zbl 1012.62034 · doi:10.1214/aos/1009210692
[5] Baraud, Y., Comte, F. and Viennet, G. (2001). Model selection for (auto)-regression with dependent data., ESAIM Probab. Statist. 5 33–49. · Zbl 0990.62035 · doi:10.1051/ps:2001101
[6] Barlow, M.T. and Yor, M. (1982). Semi-martingale inequalities via the Garsia–Rodemich–Rumsey lemma and applications to local times., J. Funct. Anal. 49 198–229. · Zbl 0505.60054 · doi:10.1016/0022-1236(82)90080-5
[7] Barndorff-Nielsen, O. (1978). Hyperbolic distributions and distributions on hyperbolae., Scand. J. Statist. 5 151–157. · Zbl 0386.60018
[8] Barron, A.R., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via penalization., Probab. Theory Related Fields 113 301–413. · Zbl 0946.62036 · doi:10.1007/s004400050210
[9] Beskos, A. and Roberts, G.O. (2005). Exact simulation of diffusions., Ann. Appl. Probab. 15 2422–2444. · Zbl 1101.60060 · doi:10.1214/105051605000000485
[10] Beskos, A., Papaspiliopoulos, O. and Roberts, G.O. (2006). Retrospective exact simulation of diffusion sample paths with applications., Bernoulli 12 1077–1098. · Zbl 1129.60073 · doi:10.3150/bj/1165269151
[11] Bibby, B.M. and Sørensen, M. (1995). Martingale estimation functions for discretely observed diffusion processes., Bernoulli 1 17–39. · Zbl 0830.62075 · doi:10.2307/3318679
[12] Bibby, B.M., Jacobsen, M. and Sørensen, M. (2002). Estimating functions for discretely sampled diffusion-type models. In, Handbook of Financial Econometrics. Amsterdam: North-Holland.
[13] Birgé, L. and Massart, P. (1997). From model selection to adaptive estimation. In D. Pllard, E. Torgessen and G.L. Yang (eds), Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics , pp. 55–87. New York: Springer-Verlag. · Zbl 0920.62042
[14] Birgé, L. and Massart, P. (1998). Minimum contrast estimators on sieves: exponential bounds and rates of convergence., Bernoulli 4 329–375. · Zbl 0954.62033 · doi:10.2307/3318720
[15] Comte, F. (2001). Adaptive estimation of the spectrum of a stationary Gaussian sequence., Bernoulli 7 267–298. · Zbl 0981.62075 · doi:10.2307/3318739
[16] Comte, F. and Rozenholc, Y. (2002). Adaptive estimation of mean and volatility functions in (auto-)regressive models., Stochastic Process. Appl. 97 111–145. · Zbl 1064.62046 · doi:10.1016/S0304-4149(01)00128-4
[17] Comte, F. and Rozenholc, Y. (2004). A new algorithm for fixed design regression and denoising., Ann. Inst. Statist. Math. 56 449–473. · Zbl 1057.62030 · doi:10.1007/BF02530536
[18] Dalalyan, A. (2005). Sharp adaptive estimation of the drift function for ergodic diffusions., Ann. Statist. 33 2507–2528. · Zbl 1084.62079 · doi:10.1214/009053605000000615
[19] Daubechies, I. (1992). Ten lectures on wavelets. CBMS-NSF Regional Conference Series in applied Mathematics, 6I. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA., · Zbl 0776.42018
[20] Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1996). Density estimation by wavelet thresholding., Ann. Statist. 24 508–539. · Zbl 0860.62032 · doi:10.1214/aos/1032894451
[21] Florens-Zmirou, D. (1993). On estimating the diffusion coefficient from discrete observations., J. Appl. Probab. 30 790–804. JSTOR: · Zbl 0796.62070 · doi:10.2307/3214513
[22] Genon-Catalot, V., Larédo, C. and Picard, D. (1992). Nonparametric estimation of the diffusion coefficient by wavelet methods., Scand. J. Statist. 19 319–335. · Zbl 0776.62033
[23] Gloter, A. (2000). Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient., ESAIM Probab. Statist. 4 205–227. · Zbl 1043.62070 · doi:10.1051/ps:2000105
[24] Gobet, E., Hoffmann, M. and Reiss, M. (2004). Nonparametric estimation of scalar diffusions based on low frequency data., Ann. Statist. 32 2223–2253. · Zbl 1056.62091 · doi:10.1214/009053604000000797
[25] Hoffmann, M. (1999). Adaptive estimation in diffusion processes., Stochastic Process. Appl. 79 135–163. · Zbl 1043.62528 · doi:10.1016/S0304-4149(98)00074-X
[26] Jacod, J. (2000). Non-parametric kernel estimation of the coefficient of a diffusion., Scand. J. Statist. 27 83–96. · Zbl 0938.62085 · doi:10.1111/1467-9469.00180
[27] Kessler, M. and Sørensen, M. (1999). Estimating equations based on eigenfunctions for a discretely observed diffusion process., Bernoulli 5 299–314. · Zbl 0980.62074 · doi:10.2307/3318437
[28] Kutoyants, Y.A. (2004)., Statistical Inference for Ergodic Diffusion Processes . London: Springer-Verlag. · Zbl 1038.62073
[29] Pardoux, E. and Veretennikov, A.Yu. (2001). On the Poisson equation and diffusion approximation. I., Ann. Probab. 29 1061–1085. · Zbl 1029.60053 · doi:10.1214/aop/1015345596
[30] Prakasa Rao, B.L.S. (1999)., Statistical Inference for Diffusion Type Processes. London: Edward Arnold. · Zbl 0952.62077
[31] Spokoiny, V.G. (2000). Adaptive drift estimation for nonparametric diffusion model., Ann. Statist. 28 815–836. · Zbl 1105.62330 · doi:10.1214/aos/1015951999
[32] Viennet, G. (1997). Inequalities for absolutely regular sequences: application to density estimation., Probab. Theory Related Fields 107 467–492. · Zbl 0933.62029 · doi:10.1007/s004400050094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.