×

Stochastic wave equations with dissipative damping. (English) Zbl 1122.60056

For a stochastic wave equation with nonlinear damping in a bounded open set in \(\mathbb R^n\) perturbed additively by a trace class Wiener process, growth conditions on the nonlinearity are given to ensure existence of an invariant measure for the associated Markov semigroup. A strengthened version of these conditions is shown to imply uniqueness of the invariant measure. The methods essentially rest upon employing suitable Lyapunov functions in order to obtain tightness and exponential decay properties, respectively.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
37L40 Invariant measures for infinite-dimensional dissipative dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agmon, S. A., Lectures on Elliptic Boundary Value Problems (1965), Van Nostrand
[2] Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces (1975), Noordhoff: Noordhoff Leyden
[3] Barbu, V.; Da Prato, G., The stochastic nonlinear damped wave equation, Appl. Math. Optim., 46, 125-141 (2002) · Zbl 1024.47025
[4] V. Barbu, G. Da Prato, L. Tubaro, Stochastic second order equations with nonlinear damping, 2005. Preprint; V. Barbu, G. Da Prato, L. Tubaro, Stochastic second order equations with nonlinear damping, 2005. Preprint · Zbl 1122.60056
[5] Carmona, R.; Nualart, D., Random non-linear wave equation: Smoothness of solutions, Probab. Theory Related Fields, 95, 87-102 (1993)
[6] Crauel, H.; Debussche, A.; Flandoli, F., Random attractors, J. Dynam. Differential Equations, 9, 307-341 (1997) · Zbl 0884.58064
[7] S. Cerrai, M. Freidlin, On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom, 2004. Preprint SNS; S. Cerrai, M. Freidlin, On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom, 2004. Preprint SNS · Zbl 1093.60036
[8] Dalang, R.; Frangos, N., The stochastic wave equation in two spatial dimensions, Ann. Probab., 26, I, 187-212 (1998) · Zbl 0938.60046
[9] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions (1992), Cambridge University Press · Zbl 0761.60052
[10] Da Prato, G.; Zabczyk, J., (Ergodicity for Infinite Dimensional Systems. Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, vol. 229 (1996), Cambridge University Press) · Zbl 0849.60052
[11] M. Hairer, J. Mattingly, Ergodicity of the degenerate stochastic 2-D Navier-Stokes equations, 2004. Preprint; M. Hairer, J. Mattingly, Ergodicity of the degenerate stochastic 2-D Navier-Stokes equations, 2004. Preprint · Zbl 1059.60073
[12] Kuksin, S.; Shirikyan, A., Stochastic dissipative PDEs and Gibbs measures, Commun. Math. Phys., 213, 2, 291-330 (2000) · Zbl 0974.60046
[13] Masmoudi, N.; Sang Yang, L., Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs, Commun. Math. Phys., 227, 3, 461-481 (2002) · Zbl 1009.37049
[14] Mattingly, J., Ergodicity of 2-D Navier-Stokes equations with random forcing and large viscosity, Commun. Math. Phys., 206, 2, 273-288 (1999) · Zbl 0953.37023
[15] Millet, A.; Morien, P. L., On a nonlinear stochastic wave equation in the plane: Existence and uniqueness of the solution, Ann. Appl. Probab., 11, 922-951 (2001) · Zbl 1017.60072
[16] Millet, A.; Sanz-Solé, M., Approximation and support theorem for a wave equation in two space dimensions, Bernoulli, 6, 887-915 (2000) · Zbl 0968.60059
[17] E. Pardoux, Equations aux derivées partielles stochastiques nonlinéaires monotones, Thèse, Université Paris XI, 1975; E. Pardoux, Equations aux derivées partielles stochastiques nonlinéaires monotones, Thèse, Université Paris XI, 1975
[18] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag · Zbl 0516.47023
[19] Peszat, S.; Zabczyk, J., Nonlinear stochastic wave and heat equations, Probab. Theory Related Fields, 116, 421-443 (2000) · Zbl 0959.60044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.