×

Numerical simulation of a multi-store separation phenomenon: a fictitious domain approach. (English) Zbl 1121.76034

Summary: We discuss numerical simulation of multi-store separation phenomena taking place in incompressible Newtonian viscous fluids. We assume that these phenomena are modeled by Navier-Stokes equations coupled to Euler-Newton equations describing solid rigid body motions. The numerical methodology relies on the combination of a finite element approximation with time-discretization by operator splitting and on a Lagrange multiplier based fictitious domain method allowing the flow calculations in a fixed simple shape space region. The results of numerical experiments are presented; they concern the separation and free fall of elongated ellipsoids under an airfoil-shaped cylinder.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
70E99 Dynamics of a rigid body and of multibody systems

Software:

FISHPAK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bristeau, M. O.; Glowinski, R.; Periaux, J.; Perrier, P.; Pironneau, O., On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. (I) Least square formulations and conjugate gradient solution of the continuous problems, Comput. Methods Appl. Mech. Engrg., 17/18, 619-657 (1979) · Zbl 0423.76047
[2] Argyris, J. H.; Dunne, P. C., The finite element method applied to fluid mechanics, (Hewitt, B. L.; Illingworth, C. R.; Lock, R. C.; Mangler, K. W.; McDonnell, J. H.; Richards, C.; Walkden, F., Computational Methods and Problems in Aeronautical Fluid Mechanics (1976), Academic Press: Academic Press London), 158-197
[3] Hu, H. H., Direct simulation of flows of solid-liquid mixtures, Int. J. Multiphase Flow, 22, 335-352 (1996) · Zbl 1135.76442
[4] Johnson, A.; Tezduyar, T., 3-D simulation of fluid-rigid body interactions with the number of rigid bodies reaching 100, Comput. Methods Appl. Mech. Engrg., 145, 301-321 (1997) · Zbl 0893.76043
[5] Maury, B.; Glowinski, R., Fluid-particle flow: a symmetric formulation, C.R. Acad. Sci. Paris, Série 1, 324, 1079-1084 (1997) · Zbl 0880.76045
[6] Glowinski, R.; Pan, T.-W.; Hesla, T.; Joseph, D. D., A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application to particulate flows, Int. J. Multiphase Flow, 25, 755-794 (1999) · Zbl 1137.76592
[7] Glowinski, R.; Pan, T.-W.; Hesla, T.; Joseph, D. D.; Périaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 363-426 (2001) · Zbl 1047.76097
[8] Dong, S.; Liu, D.; Maxey, M.; Karniadakis, G. E., Spectral distributed multiplier (DLM) method: algorithm and benchmark test, J. Comput. Phys., 195, 695-717 (2004) · Zbl 1115.76349
[9] Glowinski, R.; Hesla, T.; Joseph, D. D.; Pan, T.-W.; Périaux, J., Distributed Lagrange multiplier methods for particulate flows, (Bristeau, M. O.; Etgen, G.; Fitzgibbon, W.; Lions, J.-L.; Périaux, J.; Wheeler, M. F., Computational Science for the 21st Century (1997), J. Wiley: J. Wiley Chichester) · Zbl 0919.76077
[10] Glowinski, R.; Pan, T.-W.; Hesla, T.; Joseph, D. D.; Périaux, J., A fictitious domain method with distributed Lagrange multipliers for the numerical simulation of particulate flow, (Mandel, J.; Farhat, C.; Cai, X. C., Domain Decomposition Methods 10 (1998), American Mathematical Society: American Mathematical Society Providence) · Zbl 0919.76077
[11] Glowinski, R.; Pan, T.-W.; Hesla, T.; Joseph, D. D.; Périaux, J., A distributed Lagrange multiplier/fictitious domain method for flow around moving rigid bodies: application to particulate flow, Int. J. Numer. Methods Fluids, 30, 1043-1066 (1999) · Zbl 0971.76046
[12] Baaijens, F. P.T., A fictitious domain/mortar element method for fluid-structure interaction, Int. J. Numer. Methods Fluids, 35, 743-761 (2001) · Zbl 0979.76044
[13] Wagner, G. J.; Moes, N.; Liu, W. K.; Belytschko, T., The extended finite element method for rigid particles in Stokes flow, Int. J. Numer. Methods Engrg., 51, 293-313 (2001) · Zbl 0998.76054
[14] Yu, Z.; Phan-Thien, N.; Fan, Y.; Tanner, R. I., Viscoelastic mobility problem of a system of particles, J. Non-Newtonian Fluid Mech., 104, 87-124 (2002) · Zbl 1058.76592
[15] Maury, B., A many-body lubrication model, C.R. Acad. Sci. Paris, Série 1, 325, 1053-1058 (1997) · Zbl 0898.76019
[16] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252 (1977) · Zbl 0403.76100
[17] Peskin, C. S.; McQueen, D. M., Modeling prosthetic heart valves for numerical analysis of blood flow in the heart, J. Comput. Phys., 37, 113-132 (1980) · Zbl 0447.92009
[18] Peskin, C. S., Lectures on mathematical aspects of physiology, Lect. Appl. Math., 19, 69-107 (1981) · Zbl 0461.92004
[19] Glowinski, R., Finite element methods for the numerical simulation of unsteady incompressible viscous flow modeled by the Navier-Stokes equations, (Ciarlet, P. G.; Lions, J.-L., Handbook of Numerical Analysis, vol. IX (2003), North-Holland: North-Holland Amsterdam) · Zbl 0496.76025
[20] Chorin, A. J.; Hughes, T. J.R.; Marsden, J. E.; McCracken, M., Product formulas and numerical algorithms, Comm. Pure Appl. Math., 31, 205-256 (1978) · Zbl 0358.65082
[21] Bertrand, T.; Tanguy, P. A.; Thibault, F., A three-dimensional fictitious domain method for incompressible fluid flow problems, Int. J. Numer. Methods Fluids, 25, 719-736 (1997) · Zbl 0896.76033
[22] Glowinski, R.; Pan, T.-W.; Périaux, J., Distributed Lagrange multiplier methods for incompressible flow around moving rigid bodies, Comput. Methods Appl. Mech. Engrg., 151, 181-194 (1998) · Zbl 0916.76052
[23] J. Adams, P. Swarztrauber, R. Sweet, FISHPAK: a package of Fortran subprograms for the solution of separable elliptic partial differential equations, The National Center for Atmospheric Research, Boulder, CO, 1980.; J. Adams, P. Swarztrauber, R. Sweet, FISHPAK: a package of Fortran subprograms for the solution of separable elliptic partial differential equations, The National Center for Atmospheric Research, Boulder, CO, 1980.
[24] Dean, E. J.; Glowinski, R., A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow, C.R. Acad. Sci. Paris, Série 1, 325, 783-791 (1997) · Zbl 0901.76054
[25] Dean, E. J.; Glowinski, R.; Pan, T.-W., A wave equation approach to the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations, (De Santo, J. A., Mathematical and Numerical Aspects of Wave Propagation (1998), SIAM: SIAM Philadelphia) · Zbl 0959.76070
[26] E. Rimon, S. Boyd, Efficient distance computation using best ellipsoid fit, in: The IEEE International Symposium on Intelligent Control, Glasgow, UK, IEEE, 1992.; E. Rimon, S. Boyd, Efficient distance computation using best ellipsoid fit, in: The IEEE International Symposium on Intelligent Control, Glasgow, UK, IEEE, 1992.
[27] Chou, J. C.K., Quaternion kinematic and dynamic differential equations, IEEE Trans. Robot. Automat., 8, 53-64 (1992)
[28] Glowinski, R.; Pan, T.-W.; Périaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., 111, 283-303 (1994) · Zbl 0845.73078
[29] Glowinski, R.; Pan, T.-W.; Périaux, J., A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 112, 133-148 (1994) · Zbl 0845.76069
[30] Sigurgeirson, H.; Stuart, A. M.; Wan, J., Collision detection for particles in flow, J. Comput. Phys., 172, 766-807 (2001)
[31] Dance, S. L.; Climent, E.; Maxey, M. R., Collision barrier effects on the bulk flow in a random suspension, Phys. Fluids, 16, 828-831 (2004) · Zbl 1186.76123
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.