×

Wavelets and statistical analysis of functional magnetic resonance images of the human brain. (English) Zbl 1121.62581

Summary: Wavelets provide an orthonormal basis for multiresolution analysis and decorrelation or ’whitening’ of nonstationary time series and spatial processes. Wavelets are particularly well suited to analysis of biological signals and images, such as human brain imaging data, which often have fractal or scale-invariant properties. We briefly define some key properties of the discrete wavelet transform (DWT) and review its applications to statistical analysis of functional magnetic resonance imaging (fMRI) data. We focus on time series resampling by ’wavestrapping’ of wavelet coefficients, methods for efficient linear model estimation in the wavelet domain, and wavelet-based methods for multiple hypothesis testing, all of which are somewhat simplified by the decorrelating property of the DWT.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Mallat S., A wavelet tour of signal processing (1998) · Zbl 0937.94001
[2] DOI: 10.1137/1.9781611970104 · Zbl 0776.42018 · doi:10.1137/1.9781611970104
[3] Jaffard S, Wavelets: Tools for science and technology (2001) · Zbl 0970.42020 · doi:10.1137/1.9780898718119
[4] Wornell GW., Proceedings IEEE 81 pp 1428– (1993) · doi:10.1109/5.241506
[5] Wornell GW., Signal processing with fractals: A wavelet-based approach (1996)
[6] Vidakovic B., Statistical modeling by wavelets (1999) · Zbl 0924.62032 · doi:10.1002/9780470317020
[7] Baraniuk RG, IEEE Transactions on Information Theory 47 pp 1391– (2002) · Zbl 0997.94533 · doi:10.1109/18.923723
[8] Mandelbrot BB., The fractal geometry of nature (1977)
[9] Staszewski WJ, International Journal of Bifurcation and Chaos 9 pp 455– (1999) · Zbl 0939.65149 · doi:10.1142/S0218127499000304
[10] Schroeder M., Fractals, chaos, power laws: Minutes from an infinite paradise (1991) · Zbl 0758.58001
[11] Abry P, IEEE Signal Processing Magazine 19 pp 28– (2002) · doi:10.1109/79.998080
[12] Mandelbrot BB., Fractals and scaling in finance: Discontinuity, concentration, risk (1997) · Zbl 1005.91001 · doi:10.1007/978-1-4757-2763-0
[13] Peng CK, Physica A 221 pp 180– (1995) · doi:10.1016/0378-4371(95)00247-5
[14] Brown JH, Philosophical Transactions of the Royal Society (B) 357 pp 619– (2002) · doi:10.1098/rstb.2001.0993
[15] Ivanov PC, Nature 383 pp 323– (1996) · doi:10.1038/383323a0
[16] West GB, Science 284 pp 1677– (1999) · Zbl 1226.37058 · doi:10.1126/science.284.5420.1677
[17] Caserta F, Journal of Neuroscience Methods 56 pp 133– (1995) · doi:10.1016/0165-0270(94)00115-W
[18] Bullmore ET, Electroencephalography & Clinical Neurophysiology 91 pp 337– (1994) · doi:10.1016/0013-4694(94)00181-2
[19] Linkenkaer-Hansen K, Journal of Neuroscience 21 pp 1370– (2001)
[20] Senhadji, Dillenseger JL, Annals of Biomedical Engineering 32 pp 738– (1995)
[21] Bullmore ET, Psychological Medicine 24 pp 771– (1994) · doi:10.1017/S0033291700027926
[22] Blanton RE, Psychiatry Research Neuroimaging 107 pp 29– (2001) · doi:10.1016/S0925-4927(01)00091-9
[23] Free SL, Cerebral Cortex 6 pp 830– (1996) · doi:10.1093/cercor/6.6.830
[24] Thompson PM, Journal of Neuroscience 16 pp 4261– (1996)
[25] Thompson PM, Cerebral Cortex 8 pp 492– (1998) · doi:10.1093/cercor/8.6.492
[26] Kuikka J, Annals of Medicine 30 pp 242– (1998) · doi:10.3109/07853899809005851
[27] Turner R., NeuroImage 13 pp S1011– (2001) · doi:10.1016/S1053-8119(01)92347-X
[28] Zarahn E, NeuroImage 5 pp 179– (1997) · doi:10.1006/nimg.1997.0263
[29] Fadili MJ, Proceedings IEEE International Conference on Image Processing pp 225–
[30] Fadili MJ, NeuroImage 15 pp 217– (2002) · doi:10.1006/nimg.2001.0955
[31] Guan S, Physica D 163 pp 49– (2002) · Zbl 0986.37073 · doi:10.1016/S0167-2789(01)00391-8
[32] Nakao H, International Journal of Bifurcations & Chaos 11 pp 1483– (2001) · Zbl 1206.37051 · doi:10.1142/S0218127401002833
[33] Parlitz U, Physical Review E 51 pp 2709– (1995) · doi:10.1103/PhysRevE.51.R2709
[34] Aldroubi A, Wavelets in biology and medicine (1996)
[35] Laine A., Annual Review of Biomedical Engineering 2 pp 511– (2000) · doi:10.1146/annurev.bioeng.2.1.511
[36] Percival DB, Wavelet methods for time series analysis (2000) · doi:10.1017/CBO9780511841040
[37] Bruce A, Applied wavelet analysis with S-PLUS (1996)
[38] Weaver JB, Magnetic Resonance in Medicine 21 pp 288– (1991) · doi:10.1002/mrm.1910210213
[39] Angelidis PA., Magnetic Resonance Imaging 12 pp 1111– (1994) · doi:10.1016/0730-725X(94)91243-P
[40] Maldjian JA, American Journal of Roentgenology 169 pp 23– (1997) · doi:10.2214/ajr.169.1.9207495
[41] Abu-Rezq AN, Computing in Biomedical Research 12 pp 173– (1999)
[42] Iyriboz TA, Journal of Digital Imaging 12 pp 14– (1999) · doi:10.1007/BF03168745
[43] Zaroubi S, Magnetic Resonance Imaging 18 pp 59– (2000) · doi:10.1016/S0730-725X(99)00100-9
[44] Alexander ME, Magnetic Resonance Imaging 18 pp 1129– (2000) · doi:10.1016/S0730-725X(00)00197-1
[45] Ruttimann U, IEEE Transactions on Medical Imaging 17 pp 142– (1998) · doi:10.1109/42.700727
[46] Brammer M., Human Brain Mapping 6 pp 378– (1998) · doi:10.1002/(SICI)1097-0193(1998)6:5/6<378::AID-HBM9>3.0.CO;2-7
[47] Desco M, Human Brain Mapping 14 pp 16– (2001) · doi:10.1002/hbm.1038
[48] Meyer FG., IEEE Transactions on Medical Imaging 22 pp 315– (2003) · doi:10.1109/TMI.2003.809587
[49] Müller K, Journal of Magnetic Resonance Imaging 17 pp 20– (2003) · doi:10.1002/jmri.10219
[50] Bullmore E, Human Brain Mapping 12 pp 61– (2001) · doi:10.1002/1097-0193(200102)12:2<61::AID-HBM1004>3.0.CO;2-W
[51] Hossien-Zadeh GA, IEEE Transactions on Medical Imaging 22 pp 795– (2003) · doi:10.1109/TMI.2003.815074
[52] Breakspear M, Physica D 182 pp 1– (2003) · Zbl 1022.62076 · doi:10.1016/S0167-2789(03)00136-2
[53] Dinov ID, IEEE Transactions on Information Technology in Biomedicine 6 pp 73– (2002) · Zbl 05455848 · doi:10.1109/4233.992165
[54] Kybic J, IEEE Transactions on Medical Imaging 19 pp 97– (2000) · doi:10.1109/42.836368
[55] Turkheimer FE, Journal of Cerebral Blood Flow & Metabolism 20 pp 1610– (2000) · doi:10.1097/00004647-200011000-00011
[56] Turkheimer FE, IEEE Transactions on Medical Imaging 22 pp 289– (2003) · doi:10.1109/TMI.2003.809597
[57] Cselenyi Z, NeuroImage 17 pp 47– (2002) · doi:10.1006/nimg.2002.1152
[58] Raz J, Brain and Language 66 pp 61– (1999) · doi:10.1006/brln.1998.2025
[59] Barra V, Journal of Magnetic Resonance Imaging 11 pp 267– (2000) · doi:10.1002/(SICI)1522-2586(200003)11:3<267::AID-JMRI5>3.0.CO;2-8
[60] Flandrin P., IEEE Transactions on Information Theory 38 pp 910– (1992) · Zbl 0743.60078 · doi:10.1109/18.119751
[61] Tewfik AH, Kim M., IEEE Transactions on Information Theory 38 pp 904– (1992) · Zbl 0743.60079 · doi:10.1109/18.119750
[62] Dijkerman RW, IEEE Transactions on Information Theory 40 pp 1609– (1994) · Zbl 0810.60079 · doi:10.1109/18.333875
[63] Ninness B., IEEE Transactions on Information Theory 44 pp 32– (1998) · Zbl 0905.94009 · doi:10.1109/18.650986
[64] Bullmore E, Spatial statistics: Methodological aspects and some applications pp 183– (2001) · doi:10.1007/978-1-4613-0147-9_9
[65] Nichols TE, Human Brain Mapping 15 pp 1– (2002) · doi:10.1002/hbm.1058
[66] Bullmore E, IEEE Transactions on Medical Imaging 18 pp 32– (1999) · doi:10.1109/42.750253
[67] Welchew DE, NeuroImage 17 pp 1227– (2002) · doi:10.1006/nimg.2002.1246
[68] Bullmore E, Magnetic Resonance in Medicine 35 pp 261– (1996) · doi:10.1002/mrm.1910350219
[69] Lindley DV, Annals of Statistics 9 pp 45– (1981) · Zbl 0473.62005 · doi:10.1214/aos/1176345331
[70] Davison AC, Bootstrap methods and their application (1998)
[71] Carlstein E, Bernouilli 4 pp 305– (1998) · Zbl 0920.62106 · doi:10.2307/3318719
[72] Theiler J, Physica D 58 pp 77– (1992) · Zbl 1194.37144 · doi:10.1016/0167-2789(92)90102-S
[73] Cohen A, Journal of Applied & Computational Harmonic Analysis 1 pp 54– (1993) · Zbl 0795.42018 · doi:10.1006/acha.1993.1005
[74] Locascio JL, Human Brain Mapping 5 pp 168– (1997) · doi:10.1002/(SICI)1097-0193(1997)5:3<168::AID-HBM3>3.0.CO;2-1
[75] Friston KJ, NeuroImage 12 pp 196– (2000) · doi:10.1006/nimg.2000.0609
[76] Purdon PL, Human Brain Mapping 6 pp 239– (1998) · doi:10.1002/(SICI)1097-0193(1998)6:4<239::AID-HBM4>3.0.CO;2-4
[77] Woolrich MW, NeuroImage 14 pp 1370– (2001) · doi:10.1006/nimg.2001.0931
[78] Worsley KJ, NeuroImage 15 pp 1– (2002) · doi:10.1006/nimg.2001.0933
[79] Marchini J, NeuroImage 18 pp 83– (2003) · doi:10.1006/nimg.2002.1321
[80] Donoho DL, Journal of the American Statistical Association 90 pp 1200– (1995) · doi:10.1080/01621459.1995.10476626
[81] LaConte SM, Magnetic Resonance in Medicine 44 pp 746– (2000) · doi:10.1002/1522-2594(200011)44:5<746::AID-MRM13>3.0.CO;2-O
[82] Ngan SC, NeuroImage 11 pp 797– (2000) · doi:10.1006/nimg.2000.0558
[83] Von Tscharner V, IEEE Transactions on Medical Imaging 20 pp 704– (2001) · doi:10.1109/42.938239
[84] Worsley KJ, Human Brain Mapping 4 pp 74– (1996) · doi:10.1002/(SICI)1097-0193(1996)4:1<74::AID-HBM5>3.0.CO;2-M
[85] Hilton M, Wavelets in medicine and biology pp 93– (1996)
[86] Shen X, Journal of the American Statistical Association 97 pp 1122– (2002) · Zbl 1041.62038 · doi:10.1198/016214502388618933
[87] Fadili MJ, Proceedings SPIE: Wavelets X (2003)
[88] Abramovich F, Wavelets and statistics pp 5– (1995) · doi:10.1007/978-1-4612-2544-7_1
[89] Abramovich F, Computational & Statistical Data Analysis 22 pp 351– (1996) · Zbl 04533233 · doi:10.1016/0167-9473(96)00003-5
[90] Abramovich F, Bayesian inference in wavelet based models pp 33– (1996)
[91] Ogden RT, Statistics & Computing 6 pp 93– (1996) · doi:10.1007/BF00162519
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.