×

A cell-centered diffusion scheme on two-dimensional unstructured meshes. (English) Zbl 1120.65327

Summary: We propose a new cell-centered diffusion scheme on unstructured meshes. The main feature of this scheme lies in the introduction of two normal fluxes and two temperatures on each edge. A local variational formulation written for each corner cell provides the discretization of the normal fluxes. This discretization yields a linear relation between the normal fluxes and the temperatures defined on the two edges impinging on a node. The continuity of the normal fluxes written for each edge around a node leads to a linear system. Its resolution allows to eliminate locally the edge temperatures as function of the mean temperature in each cell. In this way, we obtain a small symmetric positive definite matrix located at each node.
Finally, by summing all the nodal contributions one obtains a linear system satisfied by the cell-centered unknowns. This system is characterized by a symmetric positive definite matrix. We show numerical results for various test cases which exhibit the good behavior of this new scheme. It preserves the linear solutions on a triangular mesh. It reduces to a classical five-point scheme on rectangular grids. For non orthogonal quadrangular grids we obtain an accuracy which is almost second order on smooth meshes.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76M12 Finite volume methods applied to problems in fluid mechanics
76R50 Diffusion
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aavatsmark, I., An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6, 405-432 (2002) · Zbl 1094.76550
[2] Aavatsmark, I.; Barkve, T.; Boe, O.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anistropic media. Part I: derivation of the methods, SIAM J. Sci. Comput., 19, 1700-1716 (1998) · Zbl 0951.65080
[3] Aavatsmark, I.; Barkve, T.; Boe, O.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anistropic media. Part II: discussion and numerical results, SIAM J. Sci. Comput., 19, 1717-1736 (1998) · Zbl 0951.65082
[4] Aavatsmark, I.; Eigestad, G. T.; Klausen, R. A., Numerical convergence of the MPFA O-method for general quadrilateral grids in two and three dimensions, (Arnold, D. N.; Bochev, P. B.; Lehoucq, R. B.; Nicolaides, R. A.; Shashkov, M., Compatible Spatial Discretizations. Compatible Spatial Discretizations, IMA Vol. Ser. (2006), Springer) · Zbl 1128.65093
[5] I. Aavvatsmark, G.T. Eigestad, R.A. Klausen, M.F. Wheeler, I. Yotov, Convergence of a symmetric MPFA method on quadrilateral grids. Technical Report TR-MATH 05-14, University of Pittsburgh, 2005.; I. Aavvatsmark, G.T. Eigestad, R.A. Klausen, M.F. Wheeler, I. Yotov, Convergence of a symmetric MPFA method on quadrilateral grids. Technical Report TR-MATH 05-14, University of Pittsburgh, 2005. · Zbl 1128.65093
[6] Crumpton, P. I.; Shaw, G. J.; Ware, A. F., Discretisation and multigrid solution of elliptic equations with mixed derivatives terms and strongly discontinuous coefficients, J. Comp. Phys., 116, 343-358 (1995) · Zbl 0818.65113
[7] Edwards, M. G.; Rogers, C. F., Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci., 2, 259-290 (1998) · Zbl 0945.76049
[8] Eymard, R.; Gallouët, T.; Herbin, R., Finite Volume methods. Finite Volume methods, Handbook of Numerical Analysis (2000), Elsevier Sciences · Zbl 1060.76075
[9] Hyman, J.; Morel, J. E.; Shashkov, M.; Steinberg, S., Mimetic finite difference methods for diffusion equations, Comput. Geosci., 6, 333-352 (2002) · Zbl 1023.76033
[10] Kershaw, D. S., Differencing of the diffusion equation in lagrangian hydrodynamic codes, J. Comp. Phys., 39, 375-395 (1981) · Zbl 0467.76080
[11] Klausen, R. A.; Russell, T. F., Relationships among some locally conservative discretization methods wich handle discontinuous coefficients, Comput. Geosci., 8, 341-377 (2004) · Zbl 1124.76030
[12] Kuznetsov, Y.; Lipnikov, K.; Shashkov, M., The mimetic finite difference method on polygonal meshes for diffusion-type problems, Comput. Geosci., 8, 301-324 (2004) · Zbl 1088.76046
[13] Lascaux, P.; Théodor, R., Analyse Numérique matricielle appliquée à l’art de l’ingénieur, vol. II (2000), Dunod · Zbl 0601.65016
[14] Lipnikov, K.; Morel, J. E.; Shashkov, M., Mimetic finite difference methods for diffusion equations on non-othogonal non-conformal meshes, J. Comp. Phys., 199, 589-597 (2004) · Zbl 1057.65071
[15] K. Lipnikov, M. Shashkov, I. Yotov, Local flux mimetic finite difference methods, Technical Report LA-UR-05-8364, Los Alamos National Laboratory, 2005.; K. Lipnikov, M. Shashkov, I. Yotov, Local flux mimetic finite difference methods, Technical Report LA-UR-05-8364, Los Alamos National Laboratory, 2005. · Zbl 1165.65063
[16] Liska, R.; Shashkov, M.; Ganzha, V., Analysis and optimization of inner products for mimetic finite difference methods on triangular grid, Math. Comput. Simulat., 67, 55-66 (2004) · Zbl 1058.65115
[17] Morel, J. E.; Dendy, J. E.; Hall, M. L.; White, S. W., A cell-centered lagrangian-mesh diffusion differencing scheme, J. Comp. Phys., 103, 286-299 (1992) · Zbl 0763.76052
[18] Morel, J. E.; Roberts, R. M.; Shashkov, M., A local support-operators diffusion discretization scheme for quadrilateral r-z meshes, J. Comp. Phys., 144, 17-51 (1998) · Zbl 1395.76052
[19] G.A. Moses, J. Yuan, Radiation diffusion in draco using kershaw difference scheme, Technical Report UWFDM-1213, Fusion Technology Institute. University of Wisconsin, 2003.; G.A. Moses, J. Yuan, Radiation diffusion in draco using kershaw difference scheme, Technical Report UWFDM-1213, Fusion Technology Institute. University of Wisconsin, 2003.
[20] J.D. Moulton, T.M. Austin, M. Shashkov, J.E. Morel, Mimetic preconditionners for mixed discretizations of the diffusion equation. Available from: <http://www.ima.umn.edu/complex/spring/discretization.html; J.D. Moulton, T.M. Austin, M. Shashkov, J.E. Morel, Mimetic preconditionners for mixed discretizations of the diffusion equation. Available from: <http://www.ima.umn.edu/complex/spring/discretization.html
[21] Le Potier, C., A finite volume method for the approximation of highly anisotropic diffusion operators on unstructured meshes, (Finite Volumes for Complex Applications IV (2005), Marrakech: Marrakech Marocco) · Zbl 1422.65210
[22] Le Potier, C., Schéma volume finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés, C.R. Acad. Sci. Paris Ser. I, 340, 921-926 (2005) · Zbl 1076.76049
[23] Shashkov, M., Conservative Finite-Difference Methods on General Grids (1996), CRC Press · Zbl 0844.65067
[24] Shashkov, M.; Steinberg, S., Support-operator finite-difference algorithms for general elliptic problems, J. Comp. Phys., 118, 131-151 (1995) · Zbl 0824.65101
[25] Shashkov, M.; Steinberg, S., Solving diffusion equations with rough coefficients in rough grids, J. Comp. Phys., 129, 383-405 (1996) · Zbl 0874.65062
[26] Subramanian, V.; Perot, J. B., High-order mimetic methods for unstructured meshes, J. Comp. Phys. (2006) · Zbl 1105.65101
[27] Thomas, J.-M.; Trujillo, D., Mixed finite volume methods, Int. J. Numer. Meth. Eng., 46, 1351-1366 (1999) · Zbl 0948.65125
[28] Zel’dovich, Y. B.; Raizer, Y. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. 1 (1966), Academic Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.