×

Characterisation of finitely generated soluble finite-by-nilpotent groups. (English) Zbl 1119.20039

For a class of groups \(\mathfrak X\), let \((\mathfrak X,\infty)\) denote the class of groups in which every infinite subset contains two distinct elements generating a subgroup in \(\mathfrak X\). B. H. Neumann [J. Aust. Math. Soc., Ser. A 21, 467-472 (1976; Zbl 0333.05110)] proved, for the class \(\mathfrak A\) of Abelian groups, that the groups in \((\mathfrak A,\infty)\) are exactly the center-by-finite groups. J. C. Lennox and J. Wiegold [ibid. 31, 459-463 (1981; Zbl 0492.20019)] showed, for the class \(\mathfrak N\) of nilpotent groups, that a finitely generated soluble group is in \((\mathfrak N,\infty)\) iff it is finite-by-nilpotent.
Here are the main results of the paper under review. For \(k>0\), let \(\Omega_k\) be the class of groups \(H\) such that \(\gamma_{k-1}(H)>\gamma_k(H)=\gamma_{k+1}(H)\) (where \(\gamma_i(H)\) is the \(i\)-th member of the lower central series of \(H\)), and \(\Omega=\bigcup_k\Omega_k\). Let \(G\) be a finitely generated soluble group. Then (1) \(G\in(\Omega,\infty)\) iff \(G\) is finite-by-nilpotent, and (2) \(G\in(\Omega_k,\infty)\) iff \(G\) is finite-by-\(\mathfrak N_{k,2}\), where \(\mathfrak N_{k,2}\) is the class of groups in which every two-generated subgroup is \(k\)-step nilpotent.

MSC:

20F16 Solvable groups, supersolvable groups
20F05 Generators, relations, and presentations of groups
20F14 Derived series, central series, and generalizations for groups
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] A. ABDOLLAHI, A characterization of infinite 3-abelian groups, Arch. Math. (Basel), 73 (1999), pp. 104-108. Zbl0936.20038 MR1703676 · Zbl 0936.20038
[2] A. ABDOLLAHI - B. TAERI, Some conditions on infinite subsets of infinite groups, Bull. Malaysian Math. Soc. (Second Series), 22 (1999), pp. 87-93. Zbl1006.20034 MR1747663 · Zbl 1006.20034
[3] A. ABDOLLAHI - B. TAERI, A condition on finitely generated soluble groups, Comm. Algebra, 27 (1999), pp. 5633-5638. Zbl0942.20014 MR1713058 · Zbl 0942.20014
[4] A. ABDOLLAHI - B. TAERI, A condition on a certain variety of groups, Rend. Sem. Mat. Univ. Padova, 104 (2000), pp. 129-134. Zbl1013.20021 MR1809354 · Zbl 1013.20021
[5] A. ABDOLLAHI - N. TRABELSSI, Quelques extentions d’un problème de Paul Erdos sur les groupes, Bull. Belg. Math. Soc. Zbl1041.20022 · Zbl 1041.20022
[6] R. BAER, Representations of groups as quotient groups II, Trans. Amer. Soc, 58 (1945), pp. 348-389. Zbl0061.02703 MR15107 · Zbl 0061.02703
[7] A. BOUKAROURA, Two conditions for infinite groups to satisfy certain laws, Algebra Colloq., 10:1 (2003), pp. 75-80. Zbl1031.20018 MR1961508 · Zbl 1031.20018
[8] C. DELIZIA - H. SMITH - A. H. RHAMTULLA, Locally graded groups with a nilpotency condition on infinite subsets, J. Austral. Math. Soc. A, 69 (2000), pp. 415-420. Zbl0982.20019 MR1793472 · Zbl 0982.20019
[9] G. ENDIMIONI, Groupes finis satisfaisant la condition ], n), C. R. Acad. Sci. Paris. Série I, 319 (1994), pp. 1245-1247. Zbl0822.20023 MR1310664 · Zbl 0822.20023
[10] K. W. GRUENBERG, Residual properties of infinite soluble groups, Proc. London Math. Soc., 7 (1957), pp. 29-62. Zbl0077.02901 MR87652 · Zbl 0077.02901
[11] P. HALL, Finite by nilpotent groups, Proc. Combridge Phlos. Soc., 52 (1956), pp. 611-616. Zbl0072.25801 MR80095 · Zbl 0072.25801
[12] O. H. KEGEL - B. A. F. WEHRFRITS, Locally finite groups, North-Holland, Amsterdam 1973. Zbl0259.20001 · Zbl 0259.20001
[13] P. S. KIM - A. H. RHEMTULLA - H. SMITH, A characterization of infinite metabelian groups, Houston J. Math., 17 (1991), pp. 129-137. Zbl0744.20033 · Zbl 0744.20033
[14] J. C. LENNOX - J. WIEGOLD, Extension of a problem of Paul Erdos on groups, J. Austral. Math. Soc., 31 (1981), pp. 459-463. Zbl0492.20019 MR638274 · Zbl 0492.20019
[15] P. LONGOBARDI - M. MAJ, A finiteness condition concerning commutators in groups, Houston J. Math., 19 (4) (1993), pp. 505-512. Zbl0813.20026 MR1251605 · Zbl 0813.20026
[16] P. LONGOBARDI - M. MAJ - A. H. RHEMTULLA, Infinite groups in a given variety and Ramsey’s theorem, Comm. Algebra, 20 (1992), pp. 127-139. Zbl0751.20020 MR1145329 · Zbl 0751.20020
[17] B. H. NEUMANN, A problem of Paul Erdos on groups, J. Austral. Math. Soc. Ser. A, 21 (1976), pp. 467-472. Zbl0333.05110 MR419283 · Zbl 0333.05110
[18] D. J. S. ROBINSON, A course in the theory of groups, Springer-Verlag, New York, 1982. Zbl0483.20001 MR648604 · Zbl 0483.20001
[19] D. SEGAL, A residual property of finitely generated abelian by nilpotent groups, J. Algebra, 32 (1974), pp. 389-399. Zbl0293.20029 MR419612 · Zbl 0293.20029
[20] L. S. SPIEZIA, A characterization of the third Engel groups, Arch. Math. (Basel), 64 (1995), pp. 369-373. Zbl0823.20038 MR1323912 · Zbl 0823.20038
[21] B. TAERI, A Question of Paul Erdos and nilpotent-by-finite groups, Bull. Austral. Math. Soc., 64 (2001), pp. 245-254. Zbl0995.20020 MR1860061 · Zbl 0995.20020
[22] N. TRABELSSI, Characterisation of nilpotent-by-finite groups, Bull. Austral. Math. Soc., 61 (2000), pp. 33-38. Zbl0959.20034 MR1819313 · Zbl 0959.20034
[23] B. A. F. WEHRFRITS, Infinite linear groups (Springer, 1973). Zbl0261.20038 · Zbl 0261.20038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.