×

The singular set of Lipschitzian minima of multiple integrals. (English) Zbl 1114.49038

This paper deals with the partial regularity of minimizers of integral functional \[ I(u)= \int_{\Omega }F(x,u(x), Du) \,dx \] where \(u: \Omega \rightarrow \mathbb R^N\) and \(F\) is a quasi-convex function in the Morrey’s sense. Let \(u\) be a minimizer and denote the singular set of \(u\) with \(\Sigma_u= \Omega-\Omega_u\), where \(\Omega_u\) is the set of \(x \in \Omega\) such that \(u \in C^{1,\sigma}(A,\mathbb R^N)\) for some \(\sigma>0\) and \(A\) is a neighborhood of \(x\). Under suitable assumptions of \(F\) and if \(u \in W^{1, \infty}(\Omega, \mathbb R^N)\) the authors give a precise estimate of the dimension of \(\Sigma_u\) i.e. dim\(_{\mathcal{H}}(\Sigma_u)\leq n-\delta\), with \(\delta>0\) depending on the data. By using the notion and the property of the set porosity, the result gives that the singular set is uniformely porous.

MSC:

49N60 Regularity of solutions in optimal control
49J45 Methods involving semicontinuity and convergence; relaxation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acerbi E., Fusco N. (1984) Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86: 125–145 · Zbl 0565.49010 · doi:10.1007/BF00275731
[2] Acerbi E., Fusco N. (1987) A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99: 261–281 · Zbl 0627.49007 · doi:10.1007/BF00284509
[3] Ball J. (1976/77) Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63: 337–403 · Zbl 0368.73040 · doi:10.1007/BF00279992
[4] Bonk M., Heinonen J. (2004) Smooth quasiregular mappings with branching. Publ. Math. Inst. Hautes Études Sci. 100: 153–170 · Zbl 1063.30021 · doi:10.1007/s10240-004-0024-8
[5] Chipot M., Evans L.C. (1986) Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations. Proc. Roy. Soc. Edinburgh Sect. A 102: 291–303 · Zbl 0602.49029
[6] David G., Semmes S (1996) On the singular sets of minimizers of the Mumford-Shah functional. J. Math. Pures Appl. (9) 75: 299–342 · Zbl 0853.49010
[7] De Giorgi E. (1968) Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital. (4) 1: 135–137 · Zbl 0155.17603
[8] Dolcini A., Esposito L., Fusco N. (1996) C 0,{\(\alpha\)} regularity of {\(\omega\)}-minima. Boll. Un. Mat. Ital. Sez. A 10: 113–125
[9] Dolzmann, G.: Variational Methods for Crystalline Microstructure–Analysis and Computation. Lecture Notes in Math., 1803. Springer, 2003 · Zbl 1016.74002
[10] Dorronsoro J.R. (1985) A characterization of potential spaces. Proc. Amer. Math. Soc. 95: 21–31 · Zbl 0577.46035 · doi:10.1090/S0002-9939-1985-0796440-3
[11] Duzaar F., Gastel A. (2002) Nonlinear elliptic systems with Dini continuous coefficients. Arch. Math. (Basel) 78: 58–73 · Zbl 1013.35028
[12] Duzaar F., Gastel A., Mingione G. (2004) Elliptic systems, singular sets and Dini continuity. Comm. Partial Differential Equations 29: 1215–1240 · Zbl 1140.35415 · doi:10.1081/PDE-200033734
[13] Duzaar F., Kronz M. (2002) Regularity of {\(\omega\)}-minimizers of quasi-convex variational integrals with polynomial growth. Differential Geom. Appl. 17: 139–152 · Zbl 1021.49026 · doi:10.1016/S0926-2245(02)00104-3
[14] Evans L.C. (1986) Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95: 227–252 · Zbl 0627.49006 · doi:10.1007/BF00251360
[15] Foss, M.: Global regularity for almost minimizers of nonconvex variational problems. Preprint 2006 · Zbl 1223.49041
[16] Giaquinta, M.: Direct methods for regularity in the calculus of variations. Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. VI (Paris, 1982/1983), 258–274, Res. Notes in Math., 109, Pitman, Boston, MA, 1984
[17] Giaquinta, M.: The problem of the regularity of minimizers. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 1072–1083, Amer. Math. Soc., Providence, RI, 1987
[18] Giaquinta, M.: Quasiconvexity, growth conditions and partial regularity. Partial Differential Equations and Calculus of Variations. Lecture Notes in Math., 1357, pp. 211–237, Springer, Berlin, 1988
[19] Giaquinta, M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1993 · Zbl 0786.35001
[20] Giusti E. (2003) Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 1028.49001
[21] Hamburger C. (1995) Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. (4) 169: 321–354 · Zbl 0852.35031 · doi:10.1007/BF01759359
[22] Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems I, II, III. Comm. Pure Appl. Math. 39, 113–137, 139–182: 353–377 (1986) · Zbl 0609.49008
[23] Kristensen J., Mingione G. (2005) The singular set of {\(\omega\)}-minima. Arch. Ration. Mech. Anal. 177: 93–114 · Zbl 1082.49036 · doi:10.1007/s00205-005-0361-x
[24] Kristensen J., Mingione G. (2006) The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180: 331–398 · Zbl 1116.49010 · doi:10.1007/s00205-005-0402-5
[25] Kristensen J., Taheri A. (2003) Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170: 63–89 · Zbl 1030.49040 · doi:10.1007/s00205-003-0275-4
[26] Landes R. (1996) Quasimonotone versus pseudomonotone. Proc. Roy. Soc. Edinburgh. Sect. A 126: 705–717 · Zbl 0863.35033
[27] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, 1995 · Zbl 0819.28004
[28] Mingione G. (2003) The singular set of solutions to non-differentiable elliptic systems. Arch. Ration. Mech. Anal. 166: 287–301 · Zbl 1142.35391 · doi:10.1007/s00205-002-0231-8
[29] Mingione G. (2003) Bounds for the singular set of solutions to non linear elliptic systems. Calc. Var. Partial Differential Equations 18: 373–400 · Zbl 1045.35024 · doi:10.1007/s00526-003-0209-x
[30] Mingione G. (2006) Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51 · Zbl 1164.49324
[31] Morrey C.B. (1952) Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2: 25–53 · Zbl 0046.10803
[32] Müller, S.: Variational models for microstructure and phase transitions. Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Math., 1713, pp.85–210. Springer, 1999
[33] Müller S., Scaron;verák V. (2003) Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math. (2) 157: 715–742 · Zbl 1083.35032 · doi:10.4007/annals.2003.157.715
[34] Nečas, J.: Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity. Theory of Nonlinear Operators (Proc. Fourth Internat. Summer School, Acad. Sci., Berlin, 1975), pp. 197–206
[35] Raymond J. P. (1991) Lipschitz regularity of solutions of some asymptotically convex problems. Proc. Roy. Soc. Edinburgh Sect. A 117: 59–73 · Zbl 0725.49012
[36] Rigot S. (2000) Uniform partial regularity of quasi minimizers for the perimeter. Calc. Var. Partial Differential Equations 10: 389–406 · Zbl 0961.49025 · doi:10.1007/s005269900038
[37] Salli A. (1991) On the Minkowski dimension of strongly porous fractal sets in R n . Proc. London Math. Soc. (3) 62: 353–372 · Zbl 0716.28006 · doi:10.1112/plms/s3-62.2.353
[38] Šverák V., Yan X. (2002) Non-Lipschitz minimizers of smooth uniformly convex variational integrals. Proc. Natl. Acad. Sci. USA 99: 15269–15276 · Zbl 1106.49046 · doi:10.1073/pnas.222494699
[39] Székelyhidi L., Jr. (2004) The regularity of critical points of polyconvex functionals. Arch. Ration. Mech. Anal. 172: 133–152 · Zbl 1049.49017 · doi:10.1007/s00205-003-0300-7
[40] Zhang, K.: On the Dirichlet problem for a class of quasilinear elliptic systems of PDEs in divergence form. Partial Differential Equations, Proc. Tranjin 1986 (Ed. S.S. Chern). Lecture Notes in Math., 1306, pp. 262–277. Springer, 1988
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.