×

The minimum effort required to eradicate infections in models with backward bifurcation. (English) Zbl 1113.92059

Summary: We study an epidemiological model which assumes that the susceptibility after a primary infection is \(r\) times the susceptibility before a primary infection. For \(r=0\) \((r=1)\) this is the SIR (SIS) model. For \(r>1+(\mu/\alpha)\) this model shows backward bifurcations, where \(\mu\) is the death rate and \(\alpha\) is the recovery rate. We show for the first time that for such models we can give an expression for the minimum effort required to eradicate the infection if we concentrate on control measures affecting the transmission rate constant \(\beta\). This eradication effort is explicitly expressed in terms of \(\alpha,r\), and \(\mu\).
As in models without backward bifurcation it can be interpreted as a reproduction number, but not necessarily as the basic reproduction number. We define the relevant reproduction numbers for this purpose. The eradication effort can be estimated from the endemic steady state. The classical basic reproduction number \(R_0\) is smaller than the eradication effort for \(r>1+(\mu/\alpha)\) and equal to the effort for other values of \(r\). The method we present is relevant to the whole class of compartmental models with backward bifurcation.

MSC:

92D30 Epidemiology
34C60 Qualitative investigation and simulation of ordinary differential equation models
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Brauer F. (2004). Backward bifurcations in simple vaccination models. J. Math. Anal. Appl. 298:418–431 · Zbl 1063.92037 · doi:10.1016/j.jmaa.2004.05.045
[2] van Boven M., Mooi F.R., Schellekens J.F.P., de Melker H.E., Kretzschmar M. (2005). Pathogen adaptation under imperfect vaccination: implications for pertussis. Proc. R. Soc. Lond. B 272:1617–1624 · doi:10.1098/rspb.2005.3108
[3] Castillo-Chavez C., Song B. (2004). Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1:361–404 · Zbl 1060.92041
[4] Diekmann O., Heesterbeek J.A.P. (2000). Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, Chichester · Zbl 0997.92505
[5] Diekmann O., Heesterbeek J.A.P., Metz J.A.J. (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 · Zbl 0726.92018 · doi:10.1007/BF00178324
[6] van den Driessche P., Watmough J. (2000). A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40:525–540 · Zbl 0961.92029 · doi:10.1007/s002850000032
[7] Hadeler K.P., Castillo-Chavez C. (1995). A core group model for disease transmission. Math. Biosci. 128:41–55 · Zbl 0832.92021 · doi:10.1016/0025-5564(94)00066-9
[8] Hadeler KP., van den Driessche P. (1997). Backward bifurcation in epidemic control. Math. Biosci. 146:15–35 · Zbl 0904.92031 · doi:10.1016/S0025-5564(97)00027-8
[9] Hadeler K.P., Liberman U. (1975). Selection models with fertility differences. J. Math. Biol. 2:19–32 · Zbl 0324.92025 · doi:10.1007/BF00276013
[10] Greenhalgh D., Diekmann O., de Jong M.C.M. (2000). Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math. Biosci. 165:1–25 · Zbl 0983.92007 · doi:10.1016/S0025-5564(00)00012-2
[11] Ineichen R., Batschelet E. (1975). Genetic selection and de Finetti diagrams. J. Math. Biol. 2:33–39 · Zbl 0305.92005 · doi:10.1007/BF00276014
[12] Kribs-Zaleta C.M. (2002). Center manifold and normal forms in epidemic models. In: Castillo-Chavez C. et al. (eds) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory, IMA 125. Springer pp. 269–286, New York · Zbl 1021.92036
[13] Kribs-Zaleta C.M., Martcheva M. (2002). Vaccination strategies and backward bifurcation in an age-since-infection structured model. Math. Biosci. 177178:317–332 · Zbl 0998.92033 · doi:10.1016/S0025-5564(01)00099-2
[14] Kribs-Zaleta C.M., Velasco-Hernandez J.X. (2000). A simple vaccination model with multiple states. Math. Biosci. 164:183–201 · Zbl 0954.92023 · doi:10.1016/S0025-5564(00)00003-1
[15] Moghadas S.M. (2004). Analysis of an epidemic model with bistable equilibria using the Poincaré index. Appl. Math. Comput. 149:689–702 · Zbl 1034.92030 · doi:10.1016/S0096-3003(03)00171-1
[16] Moghadas S.M. (2004). Modelling the effect of imperfect vaccines on disease epidemiology. Discret Contin Dyn Syst-Ser B4:999–1012 · Zbl 1052.92038 · doi:10.3934/dcdsb.2004.4.999
[17] Safan M. (2006). Spread of infectious diseases: impact on demography, and the eradication effort in models with backward bifurcation. Dissertation, University of Tuebingen, Germany
[18] Seydel R. (1988). From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis. Elsvier, Amesterdam · Zbl 0652.34059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.